Transforming I/O Requests to Hardware Operations




Transforming I/O Requests to Hardware Operations

Earlier, we described the handshaking between a device driver and a device controller, but we did not explain how the operating system connects an application request to a set of network wires or to a specific disk sector. Let's consider the example of reading a file from disk. The application refers to the data by a file name. Within a disk, the file system maps from the file name through the file-system directories to obtain the space allocation of the file. For instance, in MS-DOS, the name maps to a number that indicates an entry in the file-access table, and that table entry tells which disk blocks are allocated to the file. In UNIX, the name maps to an inode number, and the corresponding inode contains the space-allocation information. How is the connection made from the file name to the disk controller (the hardware port address or the memory-mapped controller registers)? First, we consider MS-DOS, a relatively simple operating system. The first part of an MS-DOS file name, preceding the colon, is a string that identifies a specific hardware device. For example, c: is the first part of every file name on the primary hard disk.

The fact that c: represents the primary hard disk is built into the operating system; c: is mapped to a specific port address through a device table. Because of the colon separator, the device name space is separate from the file-system name space within each device. This separation makes it easy for the operating system to associate extra functionality with each device. For instance, it is easy to invoke spooling on any files written to the printer.

If, instead, the device name space is incorporated in the regular file-system name space, as it is in UNIX, the normal file-system name services are provided automatically. If the file system provides ownership and access control to all file names, then devices have owners and access control. Since files are stored on devices, such an interface provides access to the I/O system at two levels.

Topics You May Be Interested In
Os Examples Log-structured File Systems
File Concept Multimedia- Network Management
File System Structure What Is Atomicity?
Thread Scheduling Features Of Real-time Kernels
Petersons's Solution Threads-summary

 Transforming I/O Requests to Hardware Operations

Names can be used to access the devices themselves or to access the files stored on the devices. UNFIX represents device names in the regular file-system name space. Unlike an MS-DOS file name, which has a colon separator, a UNIX path name has no clear separation of the device portion, hi fact, no part of the path name is the name of a device. UNIX has a mount table that associates prefixes of path names with specific device names. To resolve a path name, UNIX looks up the name in the mount table to find the longest matching prefix; the corresponding entry in the mount table gives the device name. This device name also has the form of a name in the file-system name space.

 When UNIX looks up this name in the file-system directory structures, it finds not an inode number but a device number. The major device number identifies a device driver that should be called to handle I/O to this device. The minor device number is passed to the device driver to index into a device table. The corresponding device-table entry gives the port address or the memory-mapped address of the device controller. 13.5 Transforming I/O Requests to Hardware Operations 519 Modern operating systems obtain significant flexibility from the maltiple stages of lookup tables in the path between a request and a physical device controller.

 

Topics You May Be Interested In
Semaphore In Operation System Firewalling To Protect Systems And Networks
Monitors Rc 4000
Paging In Operating System Windows Xp- History
Free Space Management Implementing Real-time Operating Systems
File System Example Overview Of Mass Storage Structure

The mechanisms that pass requests between applications and drivers are general. Thus, we can introduce new devices and drivers into a computer without recompiling the kernel. In fact, some operating systems have the ability to load device drivers on demand.

At boot time, the system first probes the hardware buses to determine what devices are present; it then loads in the necessary drivers, either immediately or when first required by an I/O request. Now we describe the typical life cycle of a blocking read request, as depicted in Figure 13.13. The figure suggests that an I/O operation requires a great many steps that together consume a tremendous number of CPU cycles

 1. A process issues a blocking read () system call to a file descriptor 6f a file that has been opened previously.

2. The system-call code in the kernel checks the parameters for correctness. In the case of input, if the data are already available in the buffer cache, the data are returned to the process, and the I/O request is completed.

Topics You May Be Interested In
Distributed Operating Systems Threads Overview
Monolithic Architecture - Operating System Segmentation
Hybrid Architecture Of Operating System Operating System Services
Direct Memory Access Design Principles
System Programs Threads-summary

 3. Otherwise, a physical I/O must be performed. The process is removed from the run queue and is placed on the wait queue for the device, and the I/O request is scheduled. Eventually, the I/O subsystem sends the request to the device driver. Depending on the operating system, the request is sent via a subroutine call or an in-kernel message.

4. The device driver allocates kernel buffer space to receive the data and schedules the I/O. Eventually, the driver sends commands to the device controller by writing into the device-control registers.

5. The cievice controller operates the device hardware to perform the data transfer.

6. The driver may poll for status and data, or it may have set up a DMA transfer into kernel memory. We assume that the transfer is managed by a DMA controller, which generates an interrupt when the transfer completes.

Topics You May Be Interested In
Batch Operating Systems Systems Analysis And Design: Core Concepts
Network Operating System Design Issues
Real Time Operating System Xds-940
Hybrid Architecture Of Operating System What Is Election Algorithms ?
Allocation Methods Explain Reaching Agreement.

 7. The correct interrupt handler receives the interrupt via the interruptvector table, stores any necessary data, signals the device driver, and returns from the interrupt.

8. The device driver receives the signal, determines which I/O request has completed, determines the request's status, and signals the kernel I/O subsystem that the request has been completed.

 9. The kernel transfers data or return codes to the address space of the requesting process and moves the process from the wait queue back to the ready queue.

10. Moving the process to the ready queue unblocks the process. When the scheduler assigns the process to the CPU, the process resumes execution at the completion of the system call.

Topics You May Be Interested In
Segmentation Linux-input & Output
Deadlock Prevention Multiprocessor Scheduling
Copy On Write What Is The Wafl File System?
Thread Scheduling What Is Election Algorithms ?
Robustness Distributed System


Frequently Asked Questions

+
Ans: Application I/O interface In this section, we discuss structuring techniques and interfaces for the operating system that enable I/O devices to be treated in a standard, uniform way. We explain, for instance, how an application can open a file on a disk without knowing what kind of disk it is and how new disks and other devices can be added to a computer without disruption of the operating system. Like other complex software-engineering problems, the approach here involves abstraction, encapsulation, and software layering. Specifically we can abstract away the detailed differences in I/O devices by identifying a fewgeneral kinds. Each general kind is accessed through a standardized set of functions—an interface. The differences are encapsulated in kernel modules called device drivers that internally are custom-tailored to each device but that export one of the standard interfaces. view more..
+
Ans: An Example: Networking We now return to the name-resolution issue raised in Section 16.5.1 and examine its operation with respect to the TCP/IP protocol stack on the Internet. We consider the processing needed to transfer a packet between hosts on different Ethernet networks. In a TCP/IP network, every host has a name and an associated 32-bit Internet number (or host-id). view more..
+
Ans: An Example: Windows XP Microsoft Windows XP is a general-purpose operating system designed to support a variety of security features and methods. In this section, we examine features that Windows XP uses to perform security functions. For more information and background on Windows XP, see Chapter 22. The Windows XP security model is based on the notion of user accounts. Windows XP allows the creation of any number of user accounts, which can be grouped in any manner. Access to system objects can then be permitted or denied as desired. Users are identified to the system by a unique security ID. When a user logs on, Windows XP creates a security access token that includes the security ID for the user, security IDs for any groups of which the user is a member, and a list of any special privileges that the user has. view more..
+
Ans: Transforming I/O Requests to Hardware Operations Earlier, we described the handshaking between a device driver and a device controller, but we did not explain how the operating system connects an application request to a set of network wires or to a specific disk sector. Let's consider the example of reading a file from disk. The application refers to the data by a file name. Within a disk, the file system maps from the file name through the file-system directories to obtain the space allocation of the file. For instance, in MS-DOS, the name maps to a number that indicates an entry in the file-access table, and that table entry tells which disk blocks are allocated to the file. In UNIX, the name maps to an inode number, and the corresponding inode contains the space-allocation information. How is the connection made from the file name to the disk controller (the hardware port address or the memory-mapped controller registers)? First, we consider MS-DOS, a relatively simple operating system. The first part of an MS-DOS file name, preceding the colon, is a string that identifies a specific hardware device. For example, c: is the first part of every file name on the primary hard disk view more..
+
Ans: STREAMS UNIX System V has an interesting mechanism, called STREAMS, that enables an application to assemble pipelines of driver code dynamically. A stream is a full-duplex connection between a device driver and a user-level process. It consists of a stream head that interfaces with the user process, a driver end that controls the device, and zero or more stream modules between them. view more..
+
Ans: Performance I/O is a major factor in system performance. It places heavy demands on the CPU to execute device-driver code and to schedule processes fairly and efficiently as they block and unblock. The resulting context switches stress the CPU and its hardware caches. I/O also exposes any inefficiencies in the interrupt-handling mechanisms in the kernel. view more..
+
Ans: Multiple-Processor Scheduling Our discussion thus far has focused on the problems of scheduling the CPU in a system with a single processor. If multiple CPUs are available, load sharing becomes possible; however, the scheduling problem becomes correspondingly more complex. Many possibilities have been tried; and as we saw with singleprocessor CPU scheduling, there is no one best solution. Here, we discuss several concerns in multiprocessor scheduling. We concentrate on systems in which the processors are identical—homogeneous—in terms of their functionality; we can then use any available processor to run any process in the queue. (Note, however, that even with homogeneous multiprocessors, there are sometimes limitations on scheduling. Consider a system with an I/O device attached to a private bus of one processor. view more..
+
Ans: Structure of the Page Table In this section, we explore some of the most common techniques for structuring the page table. view more..
+
Ans: Linux History Linux looks and feels much like any other UNIX system; indeed, UNIX compatibility has been a major design goal of the Linux project. However, Linux is much younger than most UNIX systems. Its development began in 1991, when a Finnish student, Linus Torvalds, wrote and christened Linux, a small but self-contained kernel for the 80386 processor, the first true 32-bit processor in Intel's range of PC-compatible CPUs. Early in its development, the Linux source code was made available free on the Internet. view more..
+
Ans: An Example: CineBlltz The CineBlitz multimedia storage server is a high-performance media server that supports both continuous media with rate requirements (such as video and audio) and conventional data with no associated rate requirements (such as text and images). CineBlitz refers to clients with rate requirements as realtime clients, whereas non-real-time clients have no rate constraints. CineBlitz guarantees to meet the rate requirements of real-time clients by implementing an admission controller, admitting a client only if there are sufficient resources to allow data retrieval at the required rate. In this section, we explore the CineBlitz disk-scheduling and admission-control algorithms. view more..
+
Ans: Example: The Intel Pentium Both paging and segmentation have advantages and disadvantages. In fact, some architectures provide both. In this section, we discuss the Intel Pentium architecture, which supports both pure segmentation and segmentation with paging. We do not give a complete description of the memory-management structure of the Pentium in this text. view more..
+
Ans: System and Network Threats Program threats typically use a breakdown in the protection mechanisms of a system to attack programs. In contrast, system and network threats involve the abuse of services and network connections. Sometimes a system and network attack is used to launch a program attack, and vice versa. System and network threats create a situation in which operating-system resources and user files are misused. Here, we discuss some examples of these threats, including worms, port scanning, and denial-of-service attacks. view more..
+
Ans: User Authentication The discussion of authentication above involves messages and sessions. But what of users? If a system cannot authenticate a user, then authenticating that a message came from that user is pointless. Thus, a major security problem for operating systems is user authentication. The protection system depends on the ability to identify the programs and processes currently executing, which in turn depends on the ability to identify each user of the system. view more..
+
Ans: Firewalling to Protect Systems and Networks We turn next to the question of how a trusted computer can be connected safely to an untrustworthy network. One solution is the use of a firewall to separate trusted and untrusted systems. A firewall is a computer, appliance, or router that sits between the trusted and the untrusted. A network firewall limits network access between the two security domains and monitors and logs all connections. It can also limit connections based on source or destination address, source or destination port, or direction of the connection. For instance, web servers use HTTP to communicate with web browsers. A firewall therefore may allow only HTTP to pass from all hosts outside the firewall to the web server within the firewall. The Morris Internet worm used the f inger protocol to break into computers, so finger would not be allowed to pass, for example. view more..
+
Ans: Algorithm Evaluation How do we select a CPU scheduling algorithm for a particular system? there are many scheduling algorithms, each with its own parameters. As a result, selecting an algorithm can be difficult. The first problem is defining the criteria to be used in selecting an algorithm. As we saw in Section 5.2, criteria are often defined in terms of CPU utilization, response time, or throughput. To select an algorithm, we must first define the relative importance of these measures. Our criteria may include several measures, such as: • Maximizing CPU utilization under the constraint that the maximum response time is 1 second • Maximizing throughput such that turnaround time is (on average) linearly proportional to total execution time Once the selection criteria have been defined, we want to evaluate the algorithms under consideration. view more..
+
Ans: Remote File Access Consider a user who requests access to a remote file. The server storing the file has been located by the naming scheme, and now the actual data transfer must take place. One way to achieve this transfer is through a remote-service mechanism, whereby requests for accesses are delivered to the server, the server machine performs the accesses, and their results are forwarded back to the user. One of the most common ways of implementing remote service is the remote procedure call (RPC) paradigm, which we discussed in Chapter 3. A direct analogy exists between disk-access methods in conventional file systems and the remote-service method in a DFS: Using the remote-service method is analogous to performing a disk access for each access request. To ensure reasonable performance of a remote-service mechanism, we can use a form of caching. In conventional file systems, the rationale for caching is to reduce disk I/O (thereby increasing performance), whereas in DFSs, the goal is to reduce both network traffic and disk I/O. In the following discussion, we describe the implementation of caching in a DFS and contrast it with the basic remote-service paradigm. view more..
+
Ans: Andrew is a distributed computing environment designed and implemented at Carnegie Mellon University. The Andrew file system (AFS) constitutes the underlying information-sharing mechanism among clients of the environment. The Transarc Corporation took over development of AFS, then was purchased by IBM. IBM has since produced several commercial implementations of AFS. AFS was subsequently chosen as the DFS for an industry coalition; the result was Transarc DFS, part of the distributed computing environment (DCE) from the OSF organization. In 2000, IBM's Transarc Lab announced that AFS would be an open-source product (termed OpenAFS) available under the IBM public license and Transarc DFS was canceled as a commercial product. OpenAFS is available under most commercial versions of UNIX as well as Linux and Microsoft Windows systems. view more..
+
Ans: Environmental Subsystems Environmental subsystems are user-mode processes layered over the native Windows XP executive services to enable Windows XP to run programs developed for other operating systems, including 16-bit Windows, MS-DOS, and POSIX. view more..




Rating - 3/5
456 views

Advertisements