Multimedia- Network Management

Network Management

 Perhaps the foremost QoS issue with multimedia systems concerns preserving rate requirements. For example, if a client wishes to view a video compressed with MPEG-1, the quality of service greatly depends on the system's ability to deliver the frames at the required rate.. Our coverage of issues such as CPU- and disk-scheduling algorithms has focused on how these techniques can be used to better meet the quality-ofservice requirements of multimedia applications.

However, if the media file is being streamed over a network—perhaps the Internet—issues relating to how the network delivers the multimedia data can also significantly affect how QoS demands are met. In this section, we explore several network issues related to the unique demands of continuous media. Before we proceed, it is worth noting that computer networks in general —and the Internet in particular— currently do not provide network protocols that can ensure the delivery of data with timing requirements. (There are some proprietary protocols—notably those running on Cisco routers—that do allow certain network traffic to be prioritized to meet QoS requirements.

Such proprietary protocols are not generalized for use across the Internet and therefore do not apply to our discussion.) When data are routed across a network, it is likely that the transmission will encounter congestion, delays, and other network traffic issues—issues that are beyond the control of the originator of the data. For multimedia data with timing requirements, any timing issues must be synchronized between the end hosts: the server delivering the content and the client playing it back. One protocol that addresses timing issues is the real-time transport protocol (RTP).

Topics You May Be Interested In
Different Types Of Operating Systems Atomicity
Microkernel Architecture Of Operating System Design Issues
Multithreading Models Example: The Intel Pentium
Monitors How Is Cpu Scheduling Done In Multimedia Systems?
Synchronization Hardware Summary Of Os Structures

 RTP is an Internet standard for delivering real-time data, including audio and video. It can be used for transporting media formats such as MP3 audio files and video files compressed using MPEG. RTP does not provide any QoS guarantees; rather, it provides features that allow a receiver to remove jitter introduced by delays and congestion in the network. In following sections, we consider two other approaches for handling the unique requirements of continuous media.

Unicasting and Multicasting

In general, there are three methods for delivering content from a server to a client across a network:

 • Unicasting, The server delivers the content to a single client. If the content is being delivered to more than one client, the server must establish a separate unicast for each client.

Topics You May Be Interested In
System Boot Thread Libraries
Computer System Organization Robustness
Operations On Process Afs - Andrew File System
Demand Paging The Operating System
Scheduling Criteria Programmer Interface

• Broadcasting. The server delivers the content to all clients, regardless of whether they wish to receive the content or not.

• Multicasting. The server delivers the content to a group of receivers who indicate they wish to receive the content; this method lies somewhere between unicasting and broadcasting. An issue with unicast delivery is that the server must establish a separate unicast session for each client. This seems especially wasteful for live real-time 726 Chapter 20 Multimedia Systems streaming, where the server must make several copies of the same content, one for each client. Obviously, broadcasting is not always appropriate, as not all clients may wish to receive the stream. (Suffice to say that broadcasting is typically only used across local area networks and is not possible across the public Internet.) Multicasting appears to be a reasonable compromise/ since it allows the server to deliver a single copy of the content to all clients indicating that they wish to receive it.

The difficulty with multicasting from a practical standpoint is that the clients must be physically close to the server or to intermediate routers that relay the content from the originating server. If the route from the server to the client must cross intermediate routers, the routers must also support multicasting. If these conditions are not met, the delays incurred during routing may result in violation of the timing requirements of the continuous media.

In the worst case, if a client is connected to an intermediate router that does not support multicasting, the client will be unable to receive the multicast stream at all! Currently, most streaming media are delivered across unicast channels; however, multicasting is used in various areas where the organization of the server and clients is known in advance.

Topics You May Be Interested In
Distributed Operating Systems The Operating System
Operating System Operations- Dual-mode Operation, Timer What Is Multics?
File Sharing Overview Of Mass Storage Structure
Algorithm Evaluation Programmer Interface
Atlas Summary Of Os Structures

 For example, a corporation with several sites across a country may be able to ensure that all sites are connected to multicasting routers and are within reasonable physical proximity to the routers. The organization will then be able to deliver a presentation from the chief executive officer using multicasting.

Real-Time Streaming Protocol

 We described some features of streaming media. As we noted there, users may be able to randomly access a media stream, perhaps rewinding or pausing, as they would with a VCR controller. How is this possible? To answer this question, let's consider how streaming media are delivered to clients. One approach is to stream the media from a standard web server using the hypertext transport protocol, or HTTP—the protocol used to deliver

Multimedia- Network Management

Topics You May Be Interested In
Real Time Operating System File System Example
Multithreading Models Structure Of Page Table
File Access Methods Requirements Of Multimedia Kernels
Swap Space Management What Is Multics?
Log-structured File Systems Atomic Transactions

documents from a web server. Quite often, clients use a media player, such as QuickTime, RealPlayer, or Windows Media Player, to play back media streamed from a standard web server. Typically, the client first requests a metafile, which contains the location (possibly identified by a uniform resource locator, or URL) of the streaming media file. This metafile is delivered to the client's web browser, and the browser then starts the appropriate media player according to the type of media specified by the metafile. For example, a Real Audio stream would require the RealPlayer, while the Windows Media Player would be used to play back streaming Windows media.

The media player then contacts the web server and requests the streaming media. The stream is delivered from the web server to the media player using standard HTTP requests. This process is outlined in Figure 20.2. The problem with delivering streaming media from a standard web server is that HTTP is considered a stateless protocol; thus, a web server does not maintain the state (or status) of its connection with a client. As a result, it is difficult for a client to pause during the delivery of streaming media content, since pausing would require the web server to know where in the stream to begin when the client wished to resume playback. An alternative strategy is to use a specialized streaming server that is designed specifically for streaming media.

One protocol designed for communication between streaming servers and media players is known as the real-time streaming protocol, or RTSP. The significant advantage RTSP provides over HTTP is a stateful connection between the client and the server, which allows the client to pause or seek to random positions in the stream during playback. Delivery of streaming media using RTSP is similar to delivery using HTTP (Figure 20.2) in that the meta file is delivered using a conventional web server. However, rather than using a web server, the streaming media is delivered from a streaming server using the RTSP protocol. The operation of RTSP is shown in Figure 20.3. RTSP defines several commands as part of its protocol; these commands are sent from a client to an RTSP streaming server. The commands include:

Multimedia- Network Management

Topics You May Be Interested In
Layered Architecture Of Operating System User Authentication
Operations On Process Algorithm Evaluation
Paging In Operating System What Is Multimedia?
Directory Implementation Mutual Exclusion
Copy On Write Types Of System Calls

SETUP. The server allocates resources for a client session.

• PLAY. The server delivers a stream to a client session established from a SETUP command.

 • PAUSE. The server suspends delivery of a stream but maintains the resources for the session.

• TEARDOWN. The server breaks down the connection and frees up resources allocated for the session. The commands can be illustrated with a state machine for the server, as shown in Figure 20.4. As you can see in the figure, the RTSP server may be in one of three states: init, ready, and playing.

Topics You May Be Interested In
Batch Operating Systems Naming And Transparency
Multiprocessor Systems Environmental Subsystems
Monitors What Is The Wafl File System?
File Protection Implementing Real-time Operating Systems
Design Issues Threads-summary

Multimedia- Network Management

Transitions between these three states are triggered when the server receives one of the RTSP commands from the client. Using RTSP rather than HTTP for streaming media offers several other advantages, but they are primarily related to networking issues and are therefore beyond the scope of this text. We encourage interested readers to consult the bibliographical notes at the end of this chapter for sources of further information.

Frequently Asked Questions

Ans: Disk Scheduling we focused primarily on systems that handle conventional data; for these systems, the scheduling goals are fairness and throughput. As a result, most traditional disk schedulers employ some form of the SCAN (Section 12.4.3) or C-SCAN (Section 12.4.4) algorithm. Continuous-media files, however, have two constraints that conventional data files generally do not have: timing deadlines and rate requirements. These two constraints must be satisfied to preserve QoS guarantees, and diskscheduling algorithms must be optimized for the constraints. Unfortunately, these two constraints are often in conflict. Continuous-media files typically require very high disk-bandwidth rates to satisfy their data-rate requirements. Because disks have relatively low transfer rates and relatively high latency rates, disk schedulers must reduce the latency times to ensure high bandwidth. view more..
Ans: CPU Scheduling We distinguished between soft real-time systems and hard real-time systems. Soft real-time systems simply give scheduling priority to critical processes. A soft real-time system ensures that a critical process will be given preference over a noncritical process but provides no guarantee as to when the critical process will be scheduled. A typical requirement of continuous media, however, is that data must be delivered to a client by a certain deadline; data that do not arrive by the deadline are unusable. Multimedia systems thus require hard real-time scheduling to ensure that a critical task will be serviced within a guaranteed period of time. Another scheduling issue concerns whether a scheduling algorithm uses static priority or dynamic priority—a distinction view more..
Ans: What Is Multimedia? The term multimedia describes a wide range of applications that are in popular use today. These include audio and video files such as MP3 audio files, DVD movies, and short video clips of movie previews or news stories downloaded over the Internet. Multimedia applications also include live webcasts (broadcast over the World Wide Web) of speeches or sporting events and even live webcams that allow a viewer in Manhattan to observe customers at a cafe in Paris. Multimedia applications need not be either audio or video; rather, a multimedia application often includes a combination of both. For example, a movie may consist of separate audio and video tracks. Nor must multimedia applications be delivered only to desktop personal computers. Increasingly, they are being directed toward smaller devices, including personal digital assistants (PDAs) and cellular telephones. view more..
Ans: Network Management Perhaps the foremost QoS issue with multimedia systems concerns preserving rate requirements. For example, if a client wishes to view a video compressed with MPEG-1, the quality of service greatly depends on the system's ability to deliver the frames at the required rate.. Our coverage of issues such as CPU- and disk-scheduling algorithms has focused on how these techniques can be used to better meet the quality-ofservice requirements of multimedia applications. However, if the media file is being streamed over a network—perhaps the Internet—issues relating to how the network delivers the multimedia data can also significantly affect how QoS demands are met. In this section, we explore several network issues related to the unique demands of continuous media. Before we proceed, it is worth noting that computer networks in general —and the Internet in particular— currently do not provide network protocols that can ensure the delivery of data with timing requirements. (There are some proprietary protocols—notably those running on Cisco routers—that do allow certain network traffic to be prioritized to meet QoS requirements. view more..
Ans: CTSS The Compatible Time-Sharing System (CTSS) (Corbato et al. [1962]) was designed at MIT as an experimental time-sharing system. It was implemented on an IBM 7090 and eventually supported up to 32 interactive users. The users were provided with a set of interactive commands that allowed them to manipulate files and to compile and run programs through a terminal. view more..
Ans: MULTICS The MULTICS operating system (Corbato and Vyssotsky [1965], Organick [1972]) was designed at MIT as a natural extension of CTSS. CTSS and other early time-sharing systems were so successful that they created an immediate desire to proceed quickly to bigger and better systems. As larger computers became available, the designers of CTSS set out to create a time-sharing utility. Computing service would be provided like electrical power. Large computer systems would be connected by telephone wires to terminals in offices and homes throughout a city. The operating system would be a time-shared system running continuously with a vast file system of shared programs and data. view more..
Ans: IBM OS/360 The longest line of operating-system development is undoubtedly that of IBM computers. The early IBM computers, such as the IBM 7090 and the IBM 7094, are prime examples of the development of common I/O subroutines, followed by development of a resident monitor, privileged instructions, memory protection, and simple batch processing. These systems were developed separately, often by each site independently. As a result, IBM was faced with many different computers, with different languages and different system software. view more..
Ans: Mach The Mach operating system traces its ancestry to the Accent operating system developed at Carnegie Mellon University (CMU) (Rashid and Robertson [1981]). Mach's communication system and philosophy are derived from Accent, but many other significant portions of the system (for example, the virtual memory system, task and thread management) were developed from scratch (Rashid [1986], Tevanian et al. [1989], and Accetta et al. [1986]). The Mach scheduler was described in detail by Tevanian et al. [1987a] and Black [1990]. view more..
Ans: History In the mid-1980s, Microsoft and IBM cooperated to develop the OS/2 operating system, which was written in assembly language for single-processor Intel 80286 systems. In 1988, Microsoft decided to make a fresh start and to develop a "new technology" (or NT) portable operating system that supported both the OS/2 and POSIX application-programming interfaces (APIs). view more..
Ans: Access Matrix Our model of protection can be viewed abstractly as a matrix, called an access matrix. The rows of the access matrix represent domains, and the columns represent objects. Each entry in the matrix consists of a set of access rights. Because the column defines objects explicitly, we can omit the object name from the access right. The entry access(/,/) defines the set of operations that a process executing in domain Dj can invoke on object . view more..
Ans: Election Algorithms Many distributed algorithms employ a coordinator process that performs functions needed by the other processes in the system. These functions include enforcing mutual exclusion, maintaining a global wait-for graph for deadlock detection, replacing a lost token, and controlling an input or output device in the system. If the coordinator process fails due to the failure of the site at which it resides, the system can continue only by restarting a new copy of the coordinator on some other site. The algorithms that determine where a new copy of the coordinator should be restarted are called election algorithms. Election algorithms assume that a unique priority number is associated with each active process in the system. For ease of notation, we assume that the priority number of process P, is /. To simplify our discussion, we assume a one-to-one correspondence between processes and sites and thus refer to both as processes. view more..
Ans: Reaching Agreement For a system to be reliable, we need a mechanism that allows a set of processes to agree on a common value. Such an agreement may not take place, for several reasons. First, the communication medium may be faulty, resulting in lost or garbled messages. Second, the processes themselves may be faulty, resulting in unpredictable process behavior. The best we can hope for in this case is that processes fail in a clean way, stopping their execution without deviating from their normal execution pattern. In the worst case, processes may send garbled or incorrect messages to other processes or even collaborate with other failed processes in an attempt to destroy the integrity of the system. view more..
Ans: Atomicity We introduced the concept of an atomic transaction, which is a program unit that must be executed atomically. That is, either all the operations associated with it are executed to completion, or none are performed. When we are dealing with a distributed system, ensuring the atomicity of a transaction becomes much more complicated than in a centralized system. This difficulty occurs because several sites may be participating in the execution of a single transaction. The failure of one of these sites, or the failure of a communication link connecting the sites, may result in erroneous computations. Ensuring that the execution of transactions in the distributed system preserves atomicity is the function of the transaction coordinator. Each site has its own local transaction coordinator, which is responsible for coordinating the execution of all the transactions initiated at that site. view more..
Ans: Concurrency Control We move next to the issue of concurrency control. In this section, we show how certain of the concurrency-control schemes discussed in Chapter 6 can be modified for use in a distributed environment. The transaction manager of a distributed database system manages the execution of those transactions (or subtransactions) that access data stored in a local site. Each such transaction may be either a local transaction (that is, a transaction that executes only at that site) or part of a global transaction (that is, a transaction that executes at several sites). Each transaction manager is responsible for maintaining a log for recovery purposes and for participating in an appropriate concurrency-control scheme to coordinate the conciirrent execution of the transactions executing at that site. As we shall see, the concurrency schemes described in Chapter 6 need to be modified to accommodate the distribution of transactions. view more..
Ans: Features of Real-Time Kernels In this section, we discuss the features necessary for designing an operating system that supports real-time processes. Before we begin, though, let's consider what is typically not needed for a real-time system. We begin by examining several features provided in many of the operating systems discussed so far in this text, including Linux, UNIX, and the various versions of Windows. These systems typically provide support for the following: • A variety of peripheral devices such as graphical displays, CD, and DVD drives • Protection and security mechanisms • Multiple users Supporting these features often results in a sophisticated—and large—kernel. For example, Windows XP has over forty million lines of source code. view more..
Ans: Implementing Real-Time Operating Systems Keeping in mind the many possible variations, we now identify the features necessary for implementing a real-time operating system. This list is by no means absolute; some systems provide more features than we list below, while other systems provide fewer. • Preemptive, priority-based scheduling • Preemptive kernel • Minimized latency view more..
Ans: VxWorks 5.x In this section, we describe VxWorks, a popular real-time operating system providing hard real-time support. VxWorks, commercially developed by Wind River Systems, is widely used in automobiles, consumer and industrial devices, and networking equipment such as switches and routers. VxWorks is also used to control the two rovers—Spirit and Opportunity—that began exploring the planet Mars in 2004. The organization of VxWorks is shown in Figure 19.12. VxWorks is centered around the Wind microkernel. Recall from our discussion in Section 2.7.3 that microkernels are designed so that the operating-system kernel provides a bare minimum of features; additional utilities, such as networking, file systems, and graphics, are provided in libraries outside of the kernel. This approach offers many benefits, including minimizing the size of the kernel—a desirable feature for an embedded system requiring a small footprint view more..
Ans: Mutual Exclusion In this section, we present a number of different algorithms for implementing mutual exclusion in a distributed environment. We assume that the system consists of n processes, each of which resides at a different processor. To simplify our discussion, we assume that processes are numbered uniquely from 1 to n and that a one-to-one mapping exists between processes and processors (that is, each process has its own processor). view more..

Rating - 3/5