Bernoulli's equation




According to the continuity equation, the speed of fluid flow can vary along the paths of the fluid. The pressure can also vary; it depends on height as in the static situation (see Section 12.2), and it also depends on the speed of flow.

Topics You May Be Interested In
Stress, Strain, And Elastic Moduli Solved Problems
Tensile And Compressive Stress And Strain Summary Of Fluid Mechanism
Bulk Stress And Strain Kepler's Third Law
Summary Of Equilibrium And Elasticity Black Holes
The Continuity Equation Black Holes, The Schwarzschild Radius, And The Event Horizon

We can derive an important relationship called Bernoulli’s equation, which relates the pressure, flow speed, and height for flow of an ideal, incompressible fluid. Bernoulli’s equation is useful in analyzing many kinds of fluid flow. The dependence of pressure on speed follows from the continuity equation, Eq. (12.10). When an incompressible fluid flows along a flow tube with varying cross section, its speed must change, and so an element of fluid must have an acceleration. If the tube is horizontal, the force that causes this acceleration has to be applied by the surrounding fluid. This means that the pressure must be different in regions of different cross section; if it were the same everywhere, the net force on every fluid element would be zero. When a horizontal flow tube narrows and a fluid element speeds up, it must be moving toward a region of lower pressure in order to have a net forward force to accelerate it. If the elevation also changes, this causes an additional pressure difference.

Topics You May Be Interested In
Standards And Units Fluid Flow
Vectors And Vector Addition The Continuity Equation
Solving Rigid-body Equilibrium Problems Examples On Gravition
Pascal Law Planetary Motions And The Center Of Mass
Pressure Gauges Spherical Mass Distributions


Frequently Asked Questions

+
Ans: The mass of a moving fluid doesn’t change as it flows. This leads to an important relationship called the continuity equation view more..
+
Ans: We are now ready to consider motion of a fluid. Fluid flow can be extremely complex, as shown by the currents in river rapids or the swirling flames of a campfire. But we can represent some situations by relatively simple idealized models. An ideal fluid is a fluid that is incompressible (that is, its density cannot change) and has no internal friction (called viscosity). view more..
+
Ans: We’ve seen that if an object is less dense than water, it will float partially submerged. But a paper clip can rest atop a water surface even though its density is several times that of water. This is an example of surface tension: view more..
+
Ans: According to the continuity equation, the speed of fluid flow can vary along the paths of the fluid. The pressure can also vary; it depends on height as in the static situation (see Section 12.2), and it also depends on the speed of flow. We can derive an important relationship called Bernoulli’s equation, view more..
+
Ans: To derive Bernoulli’s equation, we apply the work–energy theorem to the fluid in a section of a flow tube. In Fig. 12.23 we consider the element of fluid that at some initial time lies between the two cross sections a and c. The speeds at the lower and upper ends are v1 and v2. In a small time interval dt, the fluid that is initially at a moves to b, a distance ds1 = v1 dt, and the fluid that is initially at c moves to d, a distance ds2 = v2 dt. The cross-sectional areas at the two ends are A1 and A2, as shown. The fluid is incompressible; hence by the continuity equation, Eq. (12.10), the volume of fluid dV passing any cross section during time dt is the same. That is, dV = A1 ds1 = A2 ds2. view more..
+
Ans: HERE ARE SOME EXAMPLES TO DEAL WITH view more..
+
Ans: Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid relative to another. Viscosity is the reason it takes effort to paddle a canoe through calm water, but it is also the reason the paddle works. Viscous effects are important in the flow of fluids in pipes, the flow of blood, the lubrication of engine parts, and many other situations view more..
+
Ans: When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence view more..
+
Ans: SUMMARY OF EVERY TOPIC OF FLUID MECHANISM. view more..
+
Ans: Some of the earliest investigations in physical science started with questions that people asked about the night sky. Why doesn’t the moon fall to earth? Why do the planets move across the sky? Why doesn’t the earth fly off into space rather than remaining in orbit around the sun? The study of gravitation provides the answers to these and many related questions view more..
+
Ans: Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them. view more..
+
Ans: We have stated the law of gravitation in terms of the interaction between two particles. It turns out that the gravitational interaction of any two bodies having spherically symmetric mass distributions view more..
+
Ans: To determine the value of the gravitational constant G, we have to measure the gravitational force between two bodies of known masses m1 and m2 at a known distance r. The force is extremely small for bodies that are small enough to be brought into the laboratory, but it can be measured with an instrument called a torsion balance, which Sir Henry Cavendish used in 1798 to determine G. view more..
+
Ans: HERE ARE SOME SOLVED EXAMPLES TO CLEAR YOUR CONCEPTS view more..
+
Ans: gravitational forces are negligible between ordinary household-sized objects but very substantial between objects that are the size of stars. Indeed, gravitation is the most important force on the scale of planets, stars, and galaxies view more..
+
Ans: We defined the weight of a body in Section 4.4 as the attractive gravitational force exerted on it by the earth. We can now broaden our definition and say that the weight of a body is the total gravitational force exerted on the body by all other bodies in the universe view more..
+
Ans: When we first introduced gravitational potential energy in Section 7.1, we assumed that the earth’s gravitational force on a body of mass m doesn’t depend on the body’s height. This led to the expression U = mgy view more..
+
Ans: As a final note, let’s show that when we are close to the earth’s surface, Eq. (13.9) reduces to the familiar U = mgy view more..




Rating - 3/5
531 views

Advertisements