Turbulence




When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence. Figure 12.20 shows the contrast between laminar and turbulent flow for smoke rising in air. Bernoulli’s equation is not applicable to regions where turbulence occurs because the flow is not steady.

Whether a flow is laminar or turbulent depends in part on the fluid’s viscosity. The greater the viscosity, the greater the tendency for the fluid to flow in sheets (laminae) and the more likely the flow is to be laminar. (When we discussed Bernoulli’s equation in Section 12.5, we assumed that the flow was laminar and that the fluid had zero viscosity. In fact, a little viscosity is needed to ensure that the flow is laminar.)

Turbulence

 

Topics You May Be Interested In
Uncertainty And Significant Figures Deriving Bernoullis Equation
Tensile And Compressive Stress And Strain Newton's Law Of Gravitation
Fluid Mechanics Why Gravitational Forces Are Important
Gases Liquid And Density A Point Mass Inside A Spherical Shell
Pressure Gauges Amplitude, Period, Frequency, And Angular Frequency

 

 

 

 

Topics You May Be Interested In
Nature Of Physics Surface Tension
Using And Converting Units Why Gravitational Forces Are Important
Conditions For Equilibrium The Motion Of Satellites
Stress, Strain, And Elastic Moduli Black Holes
Elasticity And Plasticity Describing Oscillation

 

For a fluid of a given viscosity, flow speed is a determining factor for the onset of turbulence. A flow pattern that is stable at low speeds suddenly becomes unstable when a critical speed is reached. Irregularities in the flow pattern can be caused by roughness in the pipe wall, variations in the density of the fluid, and many other factors. At low flow speeds, these disturbances damp out; the flow pattern is stable and tends to maintain its laminar nature (Fig. 12.30a). When the critical speed is reached, however, the flow pattern becomes unstable. The disturbances no longer damp out but grow until they destroy the entire laminarflow pattern (Fig. 12.30b).



Frequently Asked Questions

+
Ans: Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid relative to another. Viscosity is the reason it takes effort to paddle a canoe through calm water, but it is also the reason the paddle works. Viscous effects are important in the flow of fluids in pipes, the flow of blood, the lubrication of engine parts, and many other situations view more..
+
Ans: HERE ARE SOME EXAMPLES TO DEAL WITH view more..
+
Ans: To derive Bernoulli’s equation, we apply the work–energy theorem to the fluid in a section of a flow tube. In Fig. 12.23 we consider the element of fluid that at some initial time lies between the two cross sections a and c. The speeds at the lower and upper ends are v1 and v2. In a small time interval dt, the fluid that is initially at a moves to b, a distance ds1 = v1 dt, and the fluid that is initially at c moves to d, a distance ds2 = v2 dt. The cross-sectional areas at the two ends are A1 and A2, as shown. The fluid is incompressible; hence by the continuity equation, Eq. (12.10), the volume of fluid dV passing any cross section during time dt is the same. That is, dV = A1 ds1 = A2 ds2. view more..
+
Ans: When the speed of a flowing fluid exceeds a certain critical value, the flow is no longer laminar. Instead, the flow pattern becomes extremely irregular and complex, and it changes continuously with time; there is no steady-state pattern. This irregular, chaotic flow is called turbulence view more..
+
Ans: SUMMARY OF EVERY TOPIC OF FLUID MECHANISM. view more..
+
Ans: Some of the earliest investigations in physical science started with questions that people asked about the night sky. Why doesn’t the moon fall to earth? Why do the planets move across the sky? Why doesn’t the earth fly off into space rather than remaining in orbit around the sun? The study of gravitation provides the answers to these and many related questions view more..
+
Ans: Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them. view more..
+
Ans: We have stated the law of gravitation in terms of the interaction between two particles. It turns out that the gravitational interaction of any two bodies having spherically symmetric mass distributions view more..
+
Ans: To determine the value of the gravitational constant G, we have to measure the gravitational force between two bodies of known masses m1 and m2 at a known distance r. The force is extremely small for bodies that are small enough to be brought into the laboratory, but it can be measured with an instrument called a torsion balance, which Sir Henry Cavendish used in 1798 to determine G. view more..
+
Ans: HERE ARE SOME SOLVED EXAMPLES TO CLEAR YOUR CONCEPTS view more..
+
Ans: gravitational forces are negligible between ordinary household-sized objects but very substantial between objects that are the size of stars. Indeed, gravitation is the most important force on the scale of planets, stars, and galaxies view more..
+
Ans: We defined the weight of a body in Section 4.4 as the attractive gravitational force exerted on it by the earth. We can now broaden our definition and say that the weight of a body is the total gravitational force exerted on the body by all other bodies in the universe view more..
+
Ans: When we first introduced gravitational potential energy in Section 7.1, we assumed that the earth’s gravitational force on a body of mass m doesn’t depend on the body’s height. This led to the expression U = mgy view more..
+
Ans: As a final note, let’s show that when we are close to the earth’s surface, Eq. (13.9) reduces to the familiar U = mgy view more..
+
Ans: Artificial satellites orbiting the earth are a familiar part of technology But how do they stay in orbit, and what determines the properties of their orbits? We can use Newton’s laws and the law of gravitation to provide the answers. In the next section we’ll analyze the motion of planets in the same way. view more..
+
Ans: A circular orbit, like trajectory 4 in Fig. 13.14, is the simplest case. It is also an important case, since many artificial satellites have nearly circular orbits and the orbits of the planets around the sun are also fairly circular view more..
+
Ans: The name planet comes from a Greek word meaning “wanderer,” and indeed the planets continuously change their positions in the sky relative to the background of stars. One of the great intellectual accomplishments of the 16th and 17th centuries was the threefold realization that the earth is also a planet, that all planets orbit the sun, and that the apparent motions of the planets as seen from the earth can be used to determine their orbits precisely view more..
+
Ans: First consider the elliptical orbits described in Kepler’s first law. Figure 13.18 shows the geometry of an ellipse. The longest dimension is the major axis, with half-length a; this half-length is called the semi-major axis. view more..




Rating - 3/5
511 views

Advertisements