# Interpreting E, K, and U in SHM

Figure 14.14 shows the energy quantities E, K, and U at x = 0, x = ±A/2, and x = ±A. Figure 14.15 is a graphical display of Eq. (14.21); energy (kinetic, potential, and total) is plotted vertically and the coordinate x is plotted horizontally. The parabolic curve in Fig. 14.15a represents the potential energy U = 1/ 2 kx2 . The horizontal line represents the total mechanical energy E, which is constant and does not vary with x. At any value of x between -A and A, the vertical distance from the x-axis to the parabola is U; since E = K + U, the remaining vertical distance up to the horizontal line is K. Figure 14.15b shows both K and U as functions of x. The horizontal line for E intersects the potential-energy curve at x = -A and x = A, so at these points the energy is entirely potential, the kinetic energy is zero, and the body comes momentarily to rest before reversing direction. As the body oscillates between -A and A, the energy is continuously transformed from potential to kinetic and back again.

Topics You May Be Interested In
Center Of Gravity Viscosity
Finding And Using The Center Of Gravity Turbulence
Stress, Strain, And Elastic Moduli Summary Of Fluid Mechanism
Pressure, Depth, And Pascals Law Examples On Gravition
Deriving Bernoullis Equation The Escape Speed From A Star

Topics You May Be Interested In
Elasticity And Plasticity A Point Mass Outside A Spherical Shell
Summary Of Equilibrium And Elasticity The Gravitational Force Between Spherical Mass Distributions
Fluid Mechanics Apparent Weight And The Earth’s Rotation
Newton's Law Of Gravitation Summary
More On Gravitational Potential Energy Period And Amplitude In Shm

Figure 14.15a shows the connection between the amplitude A and the corresponding total mechanical energy E = 1/2 kA2 . If we tried to make x greater than A (or less than -A), U would be greater than E, and K would have to be negative. But K can never be negative, so x can’t be greater than A or less than -A.

+
Ans: We can learn even more about simple harmonic motion by using energy considerations. The only horizontal force on the body in SHM in Figs. 14.2 and 14.13 is the conservative force exerted by an ideal spring. The vertical forces do no work, so the total mechanical energy of the system is conserved. We also assume that the mass of the spring itself is negligible. view more..
+
Ans: We still need to find the displacement x as a function of time for a harmonic oscillator. Equation (14.4) for a body in SHM along the x-axis is identical to Eq. (14.8) for the x-coordinate of the reference point in uniform circular motion with constant angular speed v = 2k/m view more..
+
Ans: the period and frequency of simple harmonic motion are completely determined by the mass m and the force constant k. In simple harmonic motion the period and frequency do not depend on the amplitude A. view more..
+
Ans: the energy quantities E, K, and U at x = 0, x = ±A/2, and x = ±A. Figure 14.15 is a graphical display of Eq. (14.21); energy (kinetic, potential, and total) is plotted vertically and the coordinate x is plotted horizontally. The parabolic curve in Fig. 14.15a represents the potential energy U = 1/2 kx2 . The horizontal line represents the total mechanical energy E, which is constant and does not vary with x. view more..
+
Ans: PROBLEM SOLVING STRATEGY ON ENERGY MOMENTUM OF SHM view more..
+
Ans: So far, we’ve looked at a grand total of one situation in which simple harmonic motion (SHM) occurs: a body attached to an ideal horizontal spring. But SHM can occur in any system in which there is a restoring force that is directly proportional to the displacement from equilibrium, as given by Eq. (14.3), Fx = -kx view more..
+
Ans: A mechanical watch keeps time based on the oscillations of a balance wheel (Fig. 14.19). The wheel has a moment of inertia I about its axis. A coil spring exerts a restoring torque tz that is proportional to the angular displacement u from the equilibrium position. We write tz = -ku, where k (the Greek letter kappa) is a constant called the torsion constant. Using the rotational analog of Newton’s second law for a rigid body, gtz = Iaz = I d2 u>dt2 view more..
+
Ans: The following discussion of the vibrations of molecules uses the binomial theorem. If you aren’t familiar with this theorem, you should read about it in the appropriate section of a math textbook. view more..
+
Ans: A simple pendulum is an idealized model consisting of a point mass suspended by a massless, unstretchable string. When the point mass is pulled to one side of its straight-down equilibrium position and released, it oscillates about the equilibrium position. view more..
+
Ans: A physical pendulum is any real pendulum that uses an extended body, as contrasted to the idealized simple pendulum with all of its mass concentrated at a point. F view more..

Rating - 4/5
532 views