Memory Transfer




The operation of a memory unit was described in Sec. 2-7. The transfer of information from a memory word to the outside environment is called a read operation. The transfer of new information to be stored into the memory is called a write operation. A memory word will be symbolized by the letter M. The particular memory word among the many available is selected by the memory address during the transfer. It is necessary to specify the address of M when writing memory transfer operations. This will be done by enclosing the address in square brackets following the letter M.

Consider a memory unit that receives the address from a register, called the address register, symbolized by AR . The data are transferred to another register, called the data register, symbolized by DR . The read operation can be stated as follows:

Read: DR +- M[AR]

This causes a transfer of information into DR from the memory word M selected by the address in AR .

Topics You May Be Interested In
Octal And Hexadecimal Number Conversion Common Bus System
Register Transfer Common Bus System-memory Address
Logic Microoperations Fetch And Decode
Instruction Codes Register-reference Instructions
Indirect Address Memory-reference Instructions - Sta, Lda And Bsa

The write operation transfers the content of a data register to a memory word M selected by the address. Assume that the input data are in register Rl

R3 +-- R1 + R2 + 1

R2 is the symbol for the 1' s complement of R2. Adding 1 to the 1' s complement produces the 2' s complement. Adding the contents of R 1 to the 2' s complement of R2 is equivalent to R1 - R2.

Memory Transfer

Topics You May Be Interested In
Conversion - Introduction Binary Adder
Octal And Hexadecimal Number Conversion Hardware Implementation - Selective Set
Complements Arithmetic Logic Shift Unit
Arithmetic Subtraction Instruction Set Completeness
Memory Transfer Register-reference Instructions

 

 

 

 

Topics You May Be Interested In
Integer Representation Shift Micro-operations - Logical, Circular, Arithmetic Shifts
Flow Control Computer Registers
Decimal Fixed-point Representation Timing And Control
Register Transfer Language Fetch And Decode
Some Applications Hardware Implemntation Memory-reference Instructions - Sta, Lda And Bsa

 

 

 

 

Topics You May Be Interested In
Alphanumeric Representation Logic Microoperations
Complements Operation Code
Fixed-point Representation Instruction Codes
Flow Control Program Counter
Other Binary Code Fetch And Decode

The increment and decrement microoperations are symbolized by plusone and minus-one operations, respectively. These microoperations are implemented with a combinational circuit or with a binary up-down counter. The arithmetic operations of multiply and divide are not listed in Table 4- 3. These two operations are valid arithmetic operations but are not included in the basic set of microoperations. The only place where these operations can be considered as microoperations is in a digital system, where they are implemented by means of a combinational circuit. In such a case, the signals that perform these operations propagate through gates, and the result of the operation can be transferred into a destination register by a clock pulse as soon as the output signal propagates through the combinational circuit. In most computers, the multiplication operation is implemented with a sequence of add and shift microoperations. Division is implemented with a sequence of subtract and shift microoperations. To specify the hardware in such a case requires a list of statements that use the basic microoperations of add, subtract, and shift (see Chapter 10).



Frequently Asked Questions

+
Ans: A bus system can be constructed with three-state gates instead of multiplexers. A three-state gate is a digital circuit that exhibits three states. Two of the states are signals equivalent to logic 1 and 0 as in a conventional gate. The third state is a high-impedance state. view more..
+
Ans: The two selection lines S1 and S0 are connected to the selection inputs of all four multiplexers. The selection lines choose the four bits of one register and transfer them into the four-line common bus. When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the outputs that form the bus view more..
+
Ans: A typical digital computer has many registers, and paths must be provided to transfer information from one register to another. The number of wires will be excessive if separate lines are used between each register and all other registers in the system. view more..
+
Ans: The operation of a memory unit was described in Sec. 2-7. The transfer of information from a memory word to the outside environment is called a read operation. view more..
+
Ans: To implement the add microoperation with hardware, we need the registers that hold the data and the digital component that performs the arithmetic addition. The digital circuit that forms the arithmetic sum of two bits and a previous carry is called a full-adder . view more..
+
Ans: The subtraction of binary numbers can be done most conveniently by means of complements as discussed in Sec. 3-2. Remember that the subtraction A - B can be done by taking the 2's complement of B and adding it to A. The 2's complement can be obtained by taking the 1' s complement and adding one to the least significant pair of bits. The 1's complement can be implemented with inverters and a one can be added to the sum through the input carry. view more..
+
Ans: The increment microoperation adds one to a number in a register. For example, if a 4-bit register has a binary value 0110, it will go toO! II afterit is incremented. This microoperation is easily implemented with a binary counter view more..
+
Ans: Logic microoperations specify binary operations for strings of bits stored in registers. These operations consider each bit of the register separately and treat them as binary variables. For example, the exclusive-OR microoperation with the contents of two registers . view more..
+
Ans: There are 16 different logic operations that can be performed with two binary variables. They can be determined from all possible truth tables obtained with two binary variables as shown in Table 4-5. In this table, each of the 16 columns F0 through F15 represents a truth table of one possible Boolean function for the view more..
+
Ans: The hardware implementation of logic rnicrooperations requires that logic gates be inserted for each bit or pair of bits in the registers to perform the required logic function. Although there are 16 logic rnicrooperations, most computers use only four-AND, OR, XOR (exclusive-OR), and complementfrom which all others can be derived. view more..
+
Ans: Logic microoperations are very useful for manipulating individual bits or a portion of a word stored in a register. They can be used to change bit values, delete a group of bits, or insert new bit values into a register. view more..
+
Ans: The selective-set operation sets to 1 the bits in register A where there are corresponding 1's in register B. It does not affect bit positions that have D's in B. The following numerical example clarifies this operation. view more..
+
Ans: Shift rnicrooperations are used for serial transfer of data. They are also used in conjunction with arithmetic, logic, and other data-processing operations. The contents of a register can be shifted to the left or the right. At the same time that the bits are shifted, the first flip-flop receives its binary information from the serial input view more..
+
Ans: Instead of having individual registers performing the microoperations directly, computer systems employ a number of storage registers connected to a common operational unit called an arithmetic logic unit, abbreviated ALU. view more..
+
Ans: In this chapter we introduce a basic computer and show how its operation can be puter specified with register is defined by its internal transfer registers, statements. the limirlg The otganization and control of structure, the comand the set of instructions that It uses. The design of the computer is then carried out in detall. Although the basic computer presented in this chap view more..
+
Ans: An instruction code is a group of bits that instruct the computer to perform a specific operation. It is usually divided into parts, each having its own particular interpretation. The most basic part of an instruction code is its operation part. The operation code of an instruction is a group of bits that define such operations as add, view more..
+
Ans: The simplest way to organize a computer is to have one processor register and an instruction code format with two parts. The first part specifies the operation to be performed and the second specifies an address. The memory address tells the control where to find an operand in memory. This operand is read from memory and used as the data to be operated on together with the data stored in the processor register view more..
+
Ans: In this chapter we introduce a basic computer and show how its operation can be puter specified with register is defined by its internal transfer registers, statements. the limirlg The otganization and control of structure, the comand the set of instructions that It uses. The design of the computer is then carried out in detall. Although the basic computer presented in this chapter is very small compared to commercial computers, It has the advantage of being simple enough so we can demonstrate the design process without too many complications. view more..




Rating - 4/5
461 views

Advertisements