Paging in operating system


 Paging is a memory-management scheme that permits the physical address space of a process to be noncontiguous. Paging avoids the considerable problem of fitting memory chunks of varying sizes onto the backing store; most memory-management schemes used before the introduction of paging suffered from this problem. The problem arises because, when some code fragments or data residing in main memory need to be swapped out, space must be found on the backing store.

Paging in operating system

The backing store also has the fragmentation problems discussed in connection with main memory; except that access is much slower, so compaction is impossible. Because of its advantages over earlier methods, paging in its various forms is commonly used in. most operating systems. Traditionally, support for paging has been handled by hardware. However, recent designs have implemented paging by closely integrating the hardware and operating system, especially on 64-bit microprocessors.

Basic Method

The basic method for implementing paging involves breaking physical memory into fixed-sized blocks called frames and breaking logical memory into blocks of the same size called pages. When a process is to be executed, its pages are loaded into any available memory frames from the backing store. The backing store is divided into fixed-sized blocks that are of the same size as the memory frames. The hardware support for paging is illustrated in Figure 8.7.

Topics You May Be Interested In
Hybrid Architecture Of Operating System An Example: Cineblitz
System Programs And Calls Remote File Access
Thrashing Rc 4000
Free Space Management Multimedia- Network Management
Thread Libraries What Is Special Purpose System?

Paging in operating system

 Every address generated by the CPU is divided into two parts: a page number (p) and a page offset (d). The page number is used as an index into a page table. The page table contains the base address of each page in physical memory. This base address is combined with the page offset to define the physical memory address that is sent to the memory unit. The paging model of memory is shown in Figure 8.8.

The page size (like the frame size) is defined by the hardware. The size of a page is typically a power of 2, varying between 512 bytes and 16 MB per page, depending on the computer architecture. The selection of a power of 2 as a page size makes the translation of a logical address into a page number and page offset particularly easy. If the size of logical address space is 2'"* and a page size is 2" addressing units (bytes or words), then the high-order m - n bits of a logical address designate the page number, and the n low-order bits designate the page offset. Thus, the logical address is as follows:

Paging in operating system

Topics You May Be Interested In
Various Operating System Services User Os Interface, Command Interpreter, And Graphical User Interfaces
Architectures Of Operating System Deadlock Characteristics
System Programs And Calls Memory Mapped Files
Critical Section Problems Revocation Of Access Rights
Systems Analysis And Design: Core Concepts Example: The Intel Pentium

where p is an index into the page table and d is the displacement within the page. As a concrete (although minuscule) example, consider the memory in Figure 8.9.

Paging in operating system


Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the user's view of memory can be mapped into physical memory. Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is in frame 5. Thus, logical address 0 maps to physical address 20 (= (5 x 4) + 0). Logical address 3 (page 0, offset 3) maps to physical address 23 {- (5x4 ) + 3). Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to frame 6. Thus, logical address 4 maps to physical address 24 (= (6x4) + 0). Logical address 13 maps to physical address 9.

Topics You May Be Interested In
Various Operating System Services Log-structured File Systems
Os Design And Implementation Networking In Windows Xp
Deadlock Recovery What Is Multimedia?
Thread Libraries What Is Vxworks 5.x?
Deadlock Characteristics Types Of System Calls

You may have noticed that paging itself is a form of dynamic relocation. Every logical address is bound by the paging hardware to some physical address. Using paging is similar to using a table of base (or relocation) registers,, one for each frame of memory. When we use a paging scheme, we have no external fragmentation: An 1/ free frame can be allocated to a process that needs it. However, we may have some internal fragmentation.

Notice that frames are allocated as units. If the memory requirements of a process do not happen to coincide with page boundaries, the last frame allocated may not be completely full. For example, if page size is 2,048 bytes, a process of 72,766 bytes would need 35 pages phis 1,086 bytes. It would be allocated 36 frames, resulting in an internal fragmentation of 2,048 — 1,086 = 962 bytes. In the worst case, a process would need n pages plus 1 byte. It would be allocated, n + 1 frames, resulting in an internal fragmentation of almost an entire frame. If process size is independent of page size, we expect internal fragmentation to average one-half page per process.

This consideration suggests that small page sizes are desirable. However, overhead is involved in each page-table entry, and this overhead is reduced as the size of the pages increases. Also, disk I/O is more efficient when the number of data being transferred is larger. Generally, page sizes have grown over time as processes, data sets, and main memory have become larger. Today, pages typically are between 4 KB and 8 KB in size, and some systems support even larger page sizes. Some CPUs and kernels even support multiple page sizes. For instance, Solaris uses page sizes of 8 KB and 4 MB, depending on the data stored by the pages.

Researchers are now developing variable on-the-fly page-size support. Usually, each page-table entry is 4 bytes long, but that size can vary as well. A 32-bit entry can point to one of 232 physical page frames. If frame size is 4 KB, then a system with 4-byte entries can address 244 bytes (or 16 TB) of physical memory. When a process arrives in the system to be executed, its size, expressed in pages, is examined. Each page of the process needs one frame. Thus, if the process requires n pages, at least n frames must be available in memory. If n frames are available, they are allocated to this arriving process. The first page of the process is loaded into one of the allocated frames, and the frame number is put in. the page table for this process. The next page is loaded into another frame, and its frame number is put into the page table, and so on (Figure 8.10). An important aspect of paging is the clear separation between the user's view of memory and the actual physical memory. The user program views memory as one single space, containing only this one program. In fact, the user program is scattered throughout physical memory, which also holds other programs.

Topics You May Be Interested In
Various Operating System Services Networking In Windows Xp
System Programs And Calls Event Ordering
Mass Storage Structure Overview Atomic Transactions
Linux-input & Output Threads-summary
I/o Performance Distributed System-motivation

 The difference between the user's view of memory and the actual physical memory is reconciled by the address-translation hardware. The logical addresses are translated into physical addresses. This mapping is hidden from the user and is controlled by the operating system. Notice that the user process by definition is unable to access memory it does not own. It has no way of addressing memory outside of its page table, and the table includes only those pages that the process owns. Since the operating system is managing physical memory, it must be aware of the allocation details of physical memory—which frames are allocated, which frames are available, how manv total frames there are, and so on. This information is generally kept in a data structure called a frame table. The frame table has one entry for each physical page frame, indicating whether the latter is free or allocated and, if it is allocated, to which page of which process or processes.

Paging in operating system

In addition, the operating system must be aware that user processes operate in user space, and all logical addresses must be mapped to produce physical addresses. If a user makes a system call (to do I/O, for example) and provides an address as a parameter (a buffer, for instance), that address must be mapped to produce the correct physical address. The operating system maintains a copy of the page table for each process, just as it maintains a copy of the instruction counter and register contents. This copy is used to translate logical addresses to physical addresses whenever the operating system must map a logical address to a physical address manually. It is also used by the CPU dispatcher to define the hardware page table when a process is to be allocated the CPU. Paging therefore increases the context-switch time

Hardware Support

Each operating system has its own methods for storing page tables. Most allocate a page table for each process. A pointer to the page table is stored with the other register values (like the instruction counter) in the process control block. When the dispatcher is told to start a process, it must reload the user registers and define the correct hardware page-table values from the stored user page table. The hardware implementation of the page table can be done in several ways. In the simplest case, the page table is implemented as a set of dedicated registers. These registers should be built with very high-speed logic to make the paging-address translation efficient. Every access to memory must go through the paging map, so efficiency is a major consideration. The CPU dispatcher reloads these registers, just as it reloads the other registers. Instructions i& load or modify the page-table registers are, of course, privileged, so that only the operating system can change the memory map. The DEC PDP-11 is an example of such an architecture. The address consists of 16 bits, and the page size is 8 KB. The page table thus consists of eight entries that are kept in fast registers. The use of registers for the page table is satisfactory if the page table is reasonably small (for example, 256 entries).

Topics You May Be Interested In
Various Operating System Services Communication Protocols
Threads Overview Atlas
Critical Section Problems What Is Ctss?
Special Purpose Systems What Is Atomicity?
Disk Attachment Introduction To Protection And Security

Most contemporary computers, however, allow the page table to be very large (for example, 1 million entries). For these machines, the use of fast registers to implement the page table is not feasible. Rather, the page table is kept in main memory, and a page-table base register (PTBR) points to the page table. Changing page tables requires changing only this one register, substantially reducing context-switch time. The problem with this approach is the time required to access a user memory location.

If we want to access location /, we must first index into the page table, using the value in the PTBR offset by the page number for ch8/8. This task requires a memory access. It provides us with the frame number, which is combined with the page offset to produce the actual address. We can then access the desired place in memory. With this scheme, two memory accesses are needed to access a byte (one for the page-table entry, one for the byte). Thus, memory access is slowed by a factor of 2. This delay would be intolerable under most circumstances. We might as well resort to sivapping! The standard solution to this problem is to use a special, small, fastlookup hardware cache, called a translation look-aside buffer (TLB). The TLB is associative, high-speed memory. Each entry in the TLB consists of two parts: a key (or tag) and a value. When the associative memory is presented with an item, the item is compared with all keys simultaneously. If the item is found, the corresponding value field is returned. The search is fast; the hardware, however, is expensive. Typically, the number of entries in a TLB is small, often numbering between 64 and 1,024. The TLB is used with page tables in the following way. The TLB contains only a few of the page-table entries. When a logical address is generated by the CPU, its page number is presented to the TLB. If the page number is found, its frame number is immediately available and is used to access memory.

Paging in operating system

The whole task may take less than 10 percent longer than it would if an unmapped memory reference were used. If the page number is not in the TLB (known as a TLB miss), a memory reference to the page table must be made. When the frame number is obtained, we can use it to access memory (Figure 8.11). In addition, we add the page number and frame number to the TLB, so that they will be found quickly on the next reference. If the TLB is already full of entries, the operating system must select one for replacement. Replacement policies range from least recently used (LRU) to random. Furthermore, some TLBs allow entries to be wired down, meaning that they cannot be removed from the TLB. Typically, TLB entries for kernel code are wired down. Some TLBs store address-space identifiers (ASIDs) in each TLB entry.

Topics You May Be Interested In
Threads Overview File System Example
Critical Section Problems Revocation Of Access Rights
Paging In Operating System Networking In Windows Xp
Demand Paging Disk Scheduling In Multimedia Systems
Kernel Modules Windows Xp- History

An ASID uniquely identifies each process and is used to provide address-space protection for that process. WTien the TLB attempts to resolve virtual page numbers, it ensures that the ASID for the currently running process matches the ASID associated with the virtual page. If the ASIDs do not match, the attempt is treated as a TLB miss.

In addition to providing address-space protection, an ASID allows the TLB to contain entries for several different processes simultaneously. If the TLB does not support separate ASIDs, then every time a new page table is selected (for instance, with each context switch), the TLB must be flushed (or erased) to ensure that the next executing process does not use the wrong translation information. Otherwise, the TLB could include old entries that contain valid virtual addresses but have incorrect or invalid physical addresses left over from the previous process. The percentage of times that a particular page number is found in the TLB is called the hit ratio. An 80-percent hit ratio means that we find the desired page number in the TLB 80 percent of the time.

If it takes 20 nanoseconds to search the TLB and 100 nanoseconds to access memory, then a mapped-memory access takes 120 nanoseconds when the page number is in the TLB. If we fail to find the page number in the TLB (20 nanoseconds), then we must first access memory for the page table and frame number (100 nanoseconds) and then access the desired byte in memory (100 nanoseconds), for a total of 220 nanoseconds. To find the effective memory-access time, we weight each case by its probability:

effective access time = 0.80 x 120 + 0.20 x 220 = 140 nanoseconds.

Topics You May Be Interested In
Different Types Of Operating Systems Memory Mapped Files
Time Sharing Operating Systems Afs - Andrew File System
Multiprocessor Systems What Is Ibm Os/360?
Disk Management Access Matrix
User Os Interface, Command Interpreter, And Graphical User Interfaces Introduction To Memory Management

In this example, we suffer a 40-percent slowdown in memory-access time (from 100 to 140 nanoseconds).


Memory protection in a paged environment is accomplished by protection bits associated with each frame. Normally, these bits are kept in the page table. One bit can define a page to be read-write or read-only. Every reference to memory goes through the page table to find the correct frame number. At the same time that the physical address is being computed, the protection bits can be checked to verify that no writes are being made to a read-only page. An attempt to write to a read-only page causes a hardware trap to the operating system (or memory-protection violation).

We can easily expand this approach to provide a finer level of protection. We can create hardware to provide read-only, read-write, or execute-only protection; or, by providing separate protection bits for each kind of access, we can allow any combination of these accesses. Illegal attempts will be trapped to the operating system. One additional bit is generally attached to each entry in the page table: a valid-invalid bit. When this bit is set to "valid," the associated page is in the process's logical address space and is thus a legal (or valid) page.

 When the bit is set to"invalid,'" the page is not in the process's logical address space. Illegal addresses are trapped by use of the valid-invalid bit. The operating system sets this bit for each page to allow or disallow access to the page. Suppose, for example, that in a system with a 14-bit address space (0 to 16383), we have a program that should use only addresses 0 to 10468. Given a page size of 2 KB, we get the situation shown in Figure 8.12. Addresses in pages

Topics You May Be Interested In
System Programs Afs - Andrew File System
Operations On Process Requirements Of Multimedia Kernels
Critical Section Problems What Is Multimedia?
Deadlock Recovery The Mach Operating System
File System Mounting Types Of System Calls

Paging in operating system

 For a 98-percent hit ratio, we have effective access time = 0.98 x 120 + 0.02 x 220 = 122 nanoseconds. This increased hit rate produces only a 22 percent slowdown in access time. We will further explore the impact of the hit ratio on the TLB.

0,1, 2,3, 4, and 5 are mapped normally through the page table. Any attempt to generate an address in pages 6 or 7, however, will find that the valid-invalid bit is set to invalid, and the computer will trap to the operating system (invalid page reference). Notice that this scheme has created a problem. Because the program extends to only address 10468, any reference beyond that address is illegal. However, references to page 5 are classified as valid, so accesses to addresses up to 12287 are valid. Only the addresses from 12288 to 16383 are invalid. This problem is a result of the 2-KB page size and reflects the internal fragmentation of paging. Rarely does a process use all its address range. In fact, many processes use only a small fraction of the address space available to them. It would be wasteful in these cases to create a page table with entries for every page in the address range. Most of this table would be unused but would take up valuable memory space. Some systems provide hardware, in the form of a page-table length register (PTLR), to indicate the size of the page table. This value is checked against every logical address to verify that the address is in the valid range for the process. Failure of this test causes an error trap to the operating system

Shared Pages

An advantage of paging is the possibility of sharing common code. This consideration is particularly important in a time-sharing environment. Consider a system that supports 40 users, each of whom executes a text editor. If the text editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB to support the 40 users. If the code is reentrant code (or pure code), however, it can be shared, as shown in Figure 8.13.

Topics You May Be Interested In
Different Types Of Operating Systems Memory Mapped Files
Threads Overview Design Issues
Contiguous Memory Allocation Stateful Versus Stateless Service
Paging In Operating System User Authentication
Disk Attachment Summary Of Os Structures

Paging in operating system

Here we see a three-page editor—each page 50 KB in size (the large page size is used to simplify the figure)—being shared among three processes. Each process has its own data page. Reentrant code is non-self-modifying code; it never changes during execution. Thus, two or more processes can execute the same code at the same time.

 Each process has its own copy of registers and data storage to hold the data for the process's execution. The data for two different processes will, of course, be different. Only one copy of the editor need be kept in physical memory. Each user's page table maps onto the same physical copy of the editor, but data pages are mapped onto different frames. Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40 copies of the 50 KB of data space per user.

The total space required is now 2,150 KB instead of 8,000 KB—a significant savings. Other heavily used programs can also be shared—compilers, window systems, run-time libraries, database systems, and so on. To be sharable, the code must be reentrant. The read-only nature of shared code should not be left to the correctness of the code; the operating system should enforce this property.

Topics You May Be Interested In
Distributed Operating Systems Environmental Subsystems
Process Scheduling What Is Compression In Mutimdedia?
Free Space Management Explain Reaching Agreement.
Streams Atomic Transactions
Firewalling To Protect Systems And Networks Threads-summary

The sharing of memory among processes on a system is similar to the sharing of the address space of a task by threads. Furthermore, shared memory as a method of interprocess communication. Some operating systems implement shared memory using shared pages. Organizing memory according to pages provides numerous benefits in addition to allowing several processes to share the same physical pages.

Frequently Asked Questions

Ans: An important aspect of memory management that became unavoidable with paging is the separation of the user's view of memory and the actual physical memory. As we have already seen, the user's view of memory is not the same as the actual physical memory. The user's view is mapped onto physical memory. This mapping allows differentiation between logical memory and. physical memory. view more..
Ans: Although semaphores provide a convenient and effective mechanism for process synchronization, using them incorrectly can result in timing errors that are difficult to detect, since these errors happen only if some particular execution sequences take place and these sequences do not always occur. We have seen an example of such errors in the use of counters in our solution to the producer-consumer problem view more..
Ans: The main memory must accommodate both the operating system and the various user processes. We therefore need to allocate the parts of the main memory in the most efficient way possible. This section explains one common method, contiguous memory allocation. view more..
Ans: Paging is a memory-management scheme that permits the physical address space of a process to be noncontiguous. Paging avoids the considerable problem of fitting memory chunks of varying sizes onto the backing store; most memory-management schemes used before the introduction of paging suffered from this problem. The problem arises because, when some code fragments or data residing in main memory need to be swapped out, space must be found on the backing store. view more..
Ans: Demand Paging Consider how an executable program might be loaded from disk into memory. One option is to load the entire program in physical memory at program execution time. However, a problem with this approach, is that we may not initially need the entire program in memory. Consider a program that starts with a list of available options from which the user is to select. Loading the entire program into memory results in loading the executable code for all options, regardless of whether an option is ultimately selected by the user or not. An alternative strategy is to initially load pages only as they are needed. This technique is known as demand paging and is commonly used in virtual memory systems. view more..
Ans: Thrashing If the number of frames allocated to a low-priority process falls below the minimum number required by the computer architecture, we must suspend, that process's execution. We should then page out its remaining pages, freeing all its allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU scheduling. In fact, look at any process that does not have ''enough" frames. If the process does not have the number of frames it needs to support pages in active use, it will quickly page-fault. At this point, it must replace some page. However, since all its pages are in active use, it must replace a page that will be needed again right away. Consequently, it quickly faults again, and again, and again, replacing pages that it must bring back in immediately. This high paging activity is called thrashing. A process is thrashing if it is spending more time paging than executing. view more..
Ans: When a process running in user mode requests additional memory, pages are allocated from the list of free page frames maintained by the kernel. This list is typically populated using a page-replacement algorithm such as those discussed in Section 9.4 and most likely contains free pages scattered throughout physical memory, as explained earlier. Remember, too, that if a user process requests a single byte of memory, internal fragmentation will result, as the process will be granted, an entire page frame. Kernel memory, however, is often allocated from a free-memory pool different from the list used to satisfy ordinary user-mode processes. view more..
Ans: We turn next to a description of the scheduling policies of the Solaris, Windows XP, and Linux operating systems. It is important to remember that we are describing the scheduling of kernel threads with Solaris and Linux. Recall that Linux does not distinguish between processes and threads; thus, we use the term task when discussing the Linux scheduler. view more..
Ans: Overview of Mass-Storage Structure In this section we present a general overview of the physical structure of secondary and tertiary storage devices view more..
Ans: Allocation of Frames We turn next to the issue of allocation. How do we allocate the fixed amount of free memory among the various processes? If we have 93 free frames and two processes, how many frames does each process get? The simplest case is the single-user system. Consider a single-user system with 128 KB of memory composed of pages 1 KB in size. This system has 128 frames. The operating system may take 35 KB, leaving 93 frames for the user process. Under pure demand paging, all 93 frames would initially be put on the free-frame list. When a user process started execution, it would generate a sequence of page faults. The first 93 page faults would all get free frames from the free-frame list. view more..
Ans: The direct-access nature of disks allows us flexibility in the implementation of files, in almost every case, many files are stored on the same disk. The main problem is how to allocate space to these files so that disk space is utilized effectively and files can be accessed quickly. Three major methods of allocating disk space are in wide use: contiguous, linked, and indexed. Each method has advantages and disadvantages. Some systems (such as Data General's RDOS for its Nova line of computers) support all three. view more..
Ans: Free-Space Management Since disk space is limited, we need to reuse the space from deleted files for new files, if possible. (Write-once optical disks only allow one write to any given sector, and thus such reuse is not physically possible.) To keep track of free disk space, the system maintains a free-space list. The free-space list records all free disk blocks—those not allocated to some file or directory. To create a file, we search the free-space list for the required amount of space and allocate that space to the new file. This space is then removed from the free-space list. view more..
Ans: File Concept Computers can store information on various storage media, such as magnetic disks, magnetic tapes, and optical disks. So that the computer system will be convenient to use, the operating system provides a uniform logical view of information storage. The operating system abstracts from the physical properties of its storage devices to define a logical storage unit, the file. Files are mapped by the operating system onto physical devices. These storage devices are usually nonvolatile, so the contents are persistent through power failures and system reboots. view more..
Ans: Modern disk drives are addressed as large one-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer. The size of a logical block is usually 512 bytes, although some disks can be low-level formatted to have a different logical block size, such as 1,024 bytes. view more..
Ans: In the previous sections, we explored the motivation for file sharing and some of the difficulties involved in allowing users to share files. Such file sharing is very desirable for users who want to collaborate and to reduce the effort required to achieve a computing goal. Therefore, user-oriented operating systems must accommodate the need to share files in spite of the inherent difficulties. In this section, we examine more aspects of file sharing view more..
Ans: When information is stored in a computer system, we want to keep it safe from physical damage (reliability) and improper access (protection). Reliability is generally provided by duplicate copies of files. Many computers have systems programs that automatically (or through computer-operator intervention) copy disk files to tape at regular intervals (once per day or week or month) to maintain a copy should a file system be accidentally destroyed. view more..
Ans: Goal of systems analysis and design is to improve organizational systems. This process involves developing or acquiring application software and training employees. view more..
Ans: Disk Scheduling One of the responsibilities of the operating system is to use the hardware efficiently. For the disk drives, meeting this responsibility entails having fast access time and large disk bandwidth. The access time has two major components. The seek time is the time for the disk arm to move the heads to the cylinder containing the desired sector. The rotational latency is the additional time for the disk to rotate the desired sector to the disk head. The disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer. We can improve both the access time and the bandwidth by scheduling the servicing of disk I/O requests in a good order. Whenever a process needs I/O to or from the disk, it issues a system call to the operating system view more..

Rating - 3/5