COMMUNICATION SATELLITES




COMMUNICATION SATELLITES

In the 1950s and early 1960s, people tried to set up communication systems by bouncing signals off metallized weather balloons. Unfortunately, the received signals were too weak to be of any practical use. Then the U.S. Navy noticed a kind of permanent weather balloon in the sky—the moon—and built an operational system for ship-to-shore communication by bouncing signals off it.

Further progress in the celestial communication field had to wait until the first communication satellite was launched. The key difference between an artificial satellite and a real one is that the artificial one can amplify the signals before sending them back, turning a strange curiosity into a powerful communication system.

Communication satellites have some interesting properties that make them attractive for many applications. In its simplest form, a communication satellite can be thought of as a big microwave repeater in the sky. It contains several transponders, each of which listens to some portion of the spectrum, amplifies the incoming signal, and then rebroadcasts it at another frequency to avoid interference with the incoming signal. This mode of operation is known as a bent pipe. Digital processing can be added to separately manipulate or redirect data streams in the overall band, or digital information can even be received by the satellite and rebroadcast. Regenerating signals in this way improves performance compared to a bent pipe because the satellite does not amplify noise in the upward signal. The downward beams can be broad, covering a substantial fraction of the earth’s surface, or narrow, covering an area only hundreds of kilometers in diameter. 

According to Kepler’s law, the orbital period of a satellite varies as the radius of the orbit to the 3/2 power. The higher the satellite, the longer the period. Near the surface of the earth, the period is about 90 minutes. Consequently, low-orbit satellites pass out of view fairly quickly, so many of them are needed to provide continuous coverage and ground antennas must track them. At an altitude of about 35,800 km, the period is 24 hours. At an altitude of 384,000 km, the period is about one month, as anyone who has observed the moon regularly can testify.

A satellite’s period is important, but it is not the only issue in determining where to place it. Another issue is the presence of the Van Allen belts, layers of highly charged particles trapped by the earth’s magnetic field. Any satellite flying within them would be destroyed fairly quickly by the particles. These factors lead to three regions in which satellites can be placed safely. These regions and some of their properties are illustrated in Fig. 2-15. Below we will briefly describe the satellites that inhabit each of these regions.

COMMUNICATION SATELLITES

Geostationary Satellites

In 1945, the science fiction writer Arthur C. Clarke calculated that a satellite at an altitude of 35,800 km in a circular equatorial orbit would appear to remain motionless in the sky, so it would not need to be tracked (Clarke, 1945). He went on to describe a complete communication system that used these (manned) geostationary satellites, including the orbits, solar panels, radio frequencies, and launch procedures. Unfortunately, he concluded that satellites were impractical due to the impossibility of putting power-hungry, fragile vacuum tube amplifiers into orbit, so he never pursued this idea further, although he wrote some science fiction stories about it.

The invention of the transistor changed all that, and the first artificial communication satellite, Telstar, was launched in July 1962. Since then, communication satellites have become a multibillion dollar business and the only aspect of outer space that has become highly profitable. These high-flying satellites are often called GEO (Geostationary Earth Orbit) satellites. With current technology, it is unwise to have geostationary satellites spaced much closer than 2 degrees in the 360-degree equatorial plane, to avoid interference. With a spacing of 2 degrees, there can only be 360/2 = 180 of these satellites in the sky at once. However, each transponder can use multiple frequencies and polarizations to increase the available bandwidth.

To prevent total chaos in the sky, orbit slot allocation is done by ITU. This process is highly political, with countries barely out of the stone age demanding ‘‘their’’ orbit slots (for the purpose of leasing them to the highest bidder). Other countries, however, maintain that national property rights do not extend up to the moon and that no country has a legal right to the orbit slots above its territory. To add to the fight, commercial telecommunication is not the only application. Television broadcasters, governments, and the military also want a piece of the orbiting pie.

Modern satellites can be quite large, weighing over 5000 kg and consuming several kilowatts of electric power produced by the solar panels. The effects of solar, lunar, and planetary gravity tend to move them away from their assigned orbit slots and orientations, an effect countered by on-board rocket motors. This fine-tuning activity is called station keeping. However, when the fuel for the motors has been exhausted (typically after about 10 years) the satellite drifts and tumbles helplessly, so it has to be turned off. Eventually, the orbit decays and the satellite reenters the atmosphere and burns up (or very rarely crashes to earth).

Orbit slots are not the only bone of contention. Frequencies are an issue, too, because the downlink transmissions interfere with existing microwave users. Consequently, ITU has allocated certain frequency bands to satellite users. The main ones are listed in Fig. 2-16. The C band was the first to be designated for commercial satellite traffic. Two frequency ranges are assigned in it, the lower one for downlink traffic (from the satellite) and the upper one for uplink traffic (to the satellite). To allow traffic to go both ways at the same time, two channels are required. These channels are already overcrowded because they are also used by the common carriers for terrestrial microwave links. The L and S bands were added by international agreement in 2000. However, they are narrow and also crowded.

COMMUNICATION SATELLITES

The next-highest band available to commercial telecommunication carriers is the Ku (K under) band. This band is not (yet) congested, and at its higher frequencies, satellites can be spaced as close as 1 degree. However, another problem exists: rain. Water absorbs these short microwaves well. Fortunately, heavy storms are usually localized, so using several widely separated ground stations instead of just one circumvents the problem, but at the price of extra antennas, extra cables, and extra electronics to enable rapid switching between stations. Bandwidth has also been allocated in the Ka (K above) band for commercial satellite traffic, but the equipment needed to use it is expensive. In addition to these commercial bands, many government and military bands also exist.

A modern satellite has around 40 transponders, most often with a 36-MHz bandwidth. Usually, each transponder operates as a bent pipe, but recent satellites have some on-board processing capacity, allowing more sophisticated operation. In the earliest satellites, the division of the transponders into channels was static: the bandwidth was simply split up into fixed frequency bands. Nowadays, each transponder beam is divided into time slots, with various users taking turns. We will study these two techniques (frequency division multiplexing and time division multiplexing) in detail later in this chapter.

The first geostationary satellites had a single spatial beam that illuminated about 1/3 of the earth’s surface, called its footprint. With the enormous decline in the price, size, and power requirements of microelectronics, a much more sophisticated broadcasting strategy has become possible. Each satellite is equipped with multiple antennas and multiple transponders. Each downward beam can be focused on a small geographical area, so multiple upward and downward transmissions can take place simultaneously. Typically, these so-called spot beams are elliptically shaped, and can be as small as a few hundred km in diameter. A communication satellite for the United States typically has one wide beam for the contiguous 48 states, plus spot beams for Alaska and Hawaii.

A recent development in the communication satellite world is the development of low-cost microstations, sometimes called VSATs (Very Small Aperture Terminals) (Abramson, 2000). These tiny terminals have 1-meter or smaller antennas (versus 10 m for a standard GEO antenna) and can put out about 1 watt of power. The uplink is generally good for up to 1 Mbps, but the downlink is often up to several megabits/sec. Direct broadcast satellite television uses this technology for one-way transmission.

In many VSAT systems, the microstations do not have enough power to communicate directly with one another (via the satellite, of course). Instead, a special ground station, the hub, with a large, high-gain antenna is needed to relay traffic between VSATs, as shown in Fig. 2-17. In this mode of operation, either the sender or the receiver has a large antenna and a powerful amplifier. The trade-off is a longer delay in return for having cheaper end-user stations.

VSATs have great potential in rural areas. It is not widely appreciated, but over half the world’s population lives more than hour’s walk from the nearest

COMMUNICATION SATELLITES

 

 telephone. Stringing telephone wires to thousands of small villages is far beyond the budgets of most Third World governments, but installing 1-meter VSAT dishes powered by solar cells is often feasible. VSATs provide the technology that will wire the world.

Communication satellites have several properties that are radically different from terrestrial point-to-point links. To begin with, even though signals to and from a satellite travel at the speed of light (nearly 300,000 km/sec), the long round-trip distance introduces a substantial delay for GEO satellites. Depending on the distance between the user and the ground station and the elevation of the satellite above the horizon, the end-to-end transit time is between 250 and 300 msec. A typical value is 270 msec (540 msec for a VSAT system with a hub).

For comparison purposes, terrestrial microwave links have a propagation delay of roughly 3 μsec/km, and coaxial cable or fiber optic links have a delay of approximately 5 μsec/km. The latter are slower than the former because electromagnetic signals travel faster in air than in solid materials.

Another important property of satellites is that they are inherently broadcast media. It does not cost more to send a message to thousands of stations within a transponder’s footprint than it does to send to one. For some applications, this property is very useful. For example, one could imagine a satellite broadcasting popular Web pages to the caches of a large number of computers spread over a wide area. Even when broadcasting can be simulated with point-to-point lines, satellite broadcasting may be much cheaper. On the other hand, from a privacy point of view, satellites are a complete disaster: everybody can hear everything. Encryption is essential when security is required.

Satellites also have the property that the cost of transmitting a message is independent of the distance traversed. A call across the ocean costs no more to service than a call across the street. Satellites also have excellent error rates and can be deployed almost instantly, a major consideration for disaster response and military communication.

Medium-Earth Orbit Satellites

At much lower altitudes, between the two Van Allen belts, we find the MEO (Medium-Earth Orbit) satellites. As viewed from the earth, these drift slowly in longitude, taking something like 6 hours to circle the earth. Accordingly, they must be tracked as they move through the sky. Because they are lower than the GEOs, they have a smaller footprint on the ground and require less powerful transmitters to reach them. Currently they are used for navigation systems rather than telecommunications, so we will not examine them further here. The constellation of roughly 30 GPS (Global Positioning System) satellites orbiting at about 20,200 km are examples of MEO satellites.

Low-Earth Orbit Satellites

Moving down in altitude, we come to the LEO (Low-Earth Orbit) satellites. Due to their rapid motion, large numbers of them are needed for a complete system. On the other hand, because the satellites are so close to the earth, the ground stations do not need much power, and the round-trip delay is only a few milliseconds. The launch cost is substantially cheaper too. In this section we will examine two examples of satellite constellations for voice service, Iridium and Globalstar.

For the first 30 years of the satellite era, low-orbit satellites were rarely used because they zip into and out of view so quickly. In 1990, Motorola broke new ground by filing an application with the FCC asking for permission to launch 77 low-orbit satellites for the Iridium project (element 77 is iridium). The plan was later revised to use only 66 satellites, so the project should have been renamed Dysprosium (element 66), but that probably sounded too much like a disease. The idea was that as soon as one satellite went out of view, another would replace it. This proposal set off a feeding frenzy among other communication companies. All of a sudden, everyone wanted to launch a chain of low-orbit satellites.

After seven years of cobbling together partners and financing, communication service began in November 1998. Unfortunately, the commercial demand for large, heavy satellite telephones was negligible because the mobile phone network had grown in a spectacular way since 1990. As a consequence, Iridium was not profitable and was forced into bankruptcy in August 1999 in one of the most spectacular corporate fiascos in history. The satellites and other assets (worth $5 billion) were later purchased by an investor for $25 million at a kind of extraterrestrial garage sale. Other satellite business ventures promptly followed suit.

The Iridium service restarted in March 2001 and has been growing ever since. It provides voice, data, paging, fax, and navigation service everywhere on land, air, and sea, via hand-held devices that communicate directly with the Iridium satellites. Customers include the maritime, aviation, and oil exploration industries, as well as people traveling in parts of the world lacking a telecom infrastructure (e.g., deserts, mountains, the South Pole, and some Third World countries).

The Iridium satellites are positioned at an altitude of 750 km, in circular polar orbits. They are arranged in north-south necklaces, with one satellite every 32 degrees of latitude, as shown in Fig. 2-18. Each satellite has a maximum of 48 cells (spot beams) and a capacity of 3840 channels, some of which are used for paging and navigation, while others are used for data and voice.

COMMUNICATION SATELLITES

With six satellite necklaces the entire earth is covered, as suggested by Fig. 2-18. An interesting property of Iridium is that communication between distant customers takes place in space, as shown in Fig. 2-19(a). Here we see a caller at the North Pole contacting a satellite directly overhead. Each satellite has four neighbors with which it can communicate, two in the same necklace (shown) and two in adjacent necklaces (not shown). The satellites relay the call across this grid until it is finally sent down to the callee at the South Pole.

An alternative design to Iridium is Globalstar. It is based on 48 LEO satellites but uses a different switching scheme than that of Iridium. Whereas Iridium relays calls from satellite to satellite, which requires sophisticated switching equipment in the satellites, Globalstar uses a traditional bent-pipe design. The call originating at the North Pole in Fig. 2-19(b) is sent back to earth and picked

COMMUNICATION SATELLITES

up by the large ground station at Santa’s Workshop. The call is then routed via a terrestrial network to the ground station nearest the callee and delivered by a bent-pipe connection as shown. The advantage of this scheme is that it puts much of the complexity on the ground, where it is easier to manage. Also, the use of large ground station antennas that can put out a powerful signal and receive a weak one means that lower-powered telephones can be used. After all, the telephone puts out only a few milliwatts of power, so the signal that gets back to the ground station is fairly weak, even after having been amplified by the satellite.

Satellites continue to be launched at a rate of around 20 per year, including ever-larger satellites that now weigh over 5000 kilograms. But there are also very small satellites for the more budget-conscious organization. To make space research more accessible, academics from Cal Poly and Stanford got together in 1999 to define a standard for miniature satellites and an associated launcher that would greatly lower launch costs (Nugent et al., 2008). CubeSats are satellites in units of 10 cm × 10 cm × 10 cm cubes, each weighing no more than 1 kilogram, that can be launched for as little as $40,000 each. The launcher flies as a secondary payload on commercial space missions. It is basically a tube that takes up to three units of cubesats and uses springs to release them into orbit. Roughly 20 cubesats have launched so far, with many more in the works. Most of them communicate with ground stations on the UHF and VHF bands.

Satellites Versus Fiber

A comparison between satellite communication and terrestrial communication is instructive. As recently as 25 years ago, a case could be made that the future of communication lay with communication satellites. After all, the telephone system had changed little in the previous 100 years and showed no signs of changing in the next 100 years. This glacial movement was caused in no small part by the regulatory environment in which the telephone companies were expected to provide good voice service at reasonable prices (which they did), and in return got a guaranteed profit on their investment. For people with data to transmit, 1200-bps modems were available. That was pretty much all there was.

The introduction of competition in 1984 in the United States and somewhat later in Europe changed all that radically. Telephone companies began replacing their long-haul networks with fiber and introduced high-bandwidth services like ADSL (Asymmetric Digital Subscriber Line). They also stopped their long-time practice of charging artificially high prices to long-distance users to subsidize local service. All of a sudden, terrestrial fiber connections looked like the winner.

Nevertheless, communication satellites have some major niche markets that fiber does not (and, sometimes, cannot) address. First, when rapid deployment is critical, satellites win easily. A quick response is useful for military communication systems in times of war and disaster response in times of peace. Following the massive December 2004 Sumatra earthquake and subsequent tsunami, for example, communications satellites were able to restore communications to first responders within 24 hours. This rapid response was possible because there is a developed satellite service provider market in which large players, such as Intelsat with over 50 satellites, can rent out capacity pretty much anywhere it is needed. For customers served by existing satellite networks, a VSAT can be set up easily and quickly to provide a megabit/sec link to elsewhere in the world.

A second niche is for communication in places where the terrestrial infrastructure is poorly developed. Many people nowadays want to communicate everywhere they go. Mobile phone networks cover those locations with good population density, but do not do an adequate job in other places (e.g., at sea or in the desert). Conversely, Iridium provides voice service everywhere on Earth, even at the South Pole. Terrestrial infrastructure can also be expensive to install, depending on the terrain and necessary rights of way. Indonesia, for example, has its own satellite for domestic telephone traffic. Launching one satellite was cheaper than stringing thousands of undersea cables among the 13,677 islands in the archipelago.

A third niche is when broadcasting is essential. A message sent by satellite can be received by thousands of ground stations at once. Satellites are used to distribute much network TV programming to local stations for this reason. There is now a large market for satellite broadcasts of digital TV and radio directly to end users with satellite receivers in their homes and cars. All sorts of other content can be broadcast too. For example, an organization transmitting a stream of stock, bond, or commodity prices to thousands of dealers might find a satellite system to be much cheaper than simulating broadcasting on the ground.

In short, it looks like the mainstream communication of the future will be terrestrial fiber optics combined with cellular radio, but for some specialized uses, satellites are better. However, there is one caveat that applies to all of this: economics. Although fiber offers more bandwidth, it is conceivable that terrestrial and satellite communication could compete aggressively on price. If advances in technology radically cut the cost of deploying a satellite (e.g., if some future space vehicle can toss out dozens of satellites on one launch) or low-orbit satellites catch on in a big way, it is not certain that fiber will win all markets.

 

 



Frequently Asked Questions

+
Ans: Our age has given rise to information junkies: people who need to be online all the time. For these mobile users, twisted pair, coax, and fiber optics are of no use. They need to get their ‘‘hits’’ of data for their laptop, notebook, shirt pocket, palmtop, or wristwatch computers without being tethered to the terrestrial communication infrastructure. view more..
+
Ans: The purpose of the physical layer is to transport bits from one machine to another. Various physical media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance view more..
+
Ans: Information can be transmitted on wires by varying some physical property such as voltage or current. By representing the value of this voltage or current as a single-valued function of time, f(t), we can model the behavior of the signal and analyze it mathematically. This analysis is the subject of the following sections. view more..
+
Ans: In the 1950s and early 1960s, people tried to set up communication systems by bouncing signals off metallized weather balloons. Unfortunately, the received signals were too weak to be of any practical use. Then the U.S. Navy noticed a kind of permanent weather balloon in the sky—the moon—and built an operational system for ship-to-shore communication by bouncing signals off it. view more..
+
Ans: Now that we have studied the properties of wired and wireless channels, we turn our attention to the problem of sending digital information. Wires and wireless channels carry analog signals such as continuously varying voltage, light intensity, or sound intensity. To send digital information, we must devise analog signals to represent bits. view more..
+
Ans: When two computers owned by the same company or organization and located close to each other need to communicate, it is often easiest just to run a cable between them. LANs work this way. However, when the distances are large or there are many computers or the cables have to pass through a public road or other public right of way, the costs of running private cables are usually prohibitive. view more..
+
Ans: The traditional telephone system, even if it someday gets multigigabit end-toend fiber, will still not be able to satisfy a growing group of users: people on the go. People now expect to make phone calls and to use their phones to check email and surf the Web from airplanes, cars, swimming pools, and while jogging in the park. Consequently, there is a tremendous amount of interest in wireless telephony. view more..
+
Ans: We have now studied both the fixed and wireless telephone systems in a fair amount of detail. Both will clearly play a major role in future networks. But there is another major player that has emerged over the past decade for Internet access: cable television networks. Many people nowadays get their telephone and Internet service over cable. view more..
+
Ans: In this chapter we will study the design principles for the second layer in our model, the data link layer. This study deals with algorithms for achieving reliable, efficient communication of whole units of information called frames (rather than individual bits, as in the physical layer) between two adjacent machines. By adjacent, we mean that the two machines are connected by a communication channel that acts conceptually like a wire (e.g., a coaxial cable, telephone line, or wireless channel). view more..
+
Ans: We saw in Chap. 2 that communication channels have a range of characteristics. Some channels, like optical fiber in telecommunications networks, have tiny error rates so that transmission errors are a rare occurrence. But other channels, especially wireless links and aging local loops, have error rates that are orders of magnitude larger. view more..
+
Ans: To introduce the subject of protocols, we will begin by looking at three protocols of increasing complexity. For interested readers, a simulator for these and subsequent protocols is available via the Web (see the preface). Before we look at the protocols, it is useful to make explicit some of the assumptions underlying the model of communication. view more..
+
Ans: To introduce the subject of protocols, we will begin by looking at three protocols of increasing complexity. For interested readers, a simulator for these and subsequent protocols is available via the Web (see the preface). view more..
+
Ans: In the previous protocols, data frames were transmitted in one direction only. In most practical situations, there is a need to transmit data in both directions. One way of achieving full-duplex data transmission is to run two instances of one of the previous protocols, each using a separate link for simplex data traffic (in different directions). view more..
+
Ans: In the previous protocols, data frames were transmitted in one direction only. In most practical situations, there is a need to transmit data in both directions. One way of achieving full-duplex data transmission is to run two instances of one of the previous protocols, each using a separate link for simplex data traffic (in different directions). view more..
+
Ans: Within a single building, LANs are widely used for interconnection, but most wide-area network infrastructure is built up from point-to-point lines. In Chap. 4, we will look at LANs. Here we will examine the data link protocols found on point-to-point lines in the Internet in two common situations. The first situation is when packets are sent over SONET optical fiber links in wide-area networks. view more..
+
Ans: Network links can be divided into two categories: those using point-to-point connections and those using broadcast channels. We studied point-to-point links in Chap. 2; this chapter deals with broadcast links and their protocols. view more..
+
Ans: Network links can be divided into two categories: those using point-to-point connections and those using broadcast channels. We studied point-to-point links in Chap. 2; this chapter deals with broadcast links and their protocols. view more..
+
Ans: Network links can be divided into two categories: those using point-to-point connections and those using broadcast channels. We studied point-to-point links in Chap. 2; this chapter deals with broadcast links and their protocols. view more..




Rating - NAN/5
459 views

Advertisements