NETWORK SECURITY PART - 1




NETWORK SECURITY 

For the first few decades of their existence, computer networks were primarily used by university researchers for sending email and by corporate employees for sharing printers. Under these conditions, security did not get a lot of attention. But now, as millions of ordinary citizens are using networks for banking, shopping, and filing their tax returns, and weakness after weakness has been found, network security has become a problem of massive proportions. In this chapter, we will study network security from several angles, point out numerous pitfalls, and discuss many algorithms and protocols for making networks more secure.

Security is a broad topic and covers a multitude of sins. In its simplest form, it is concerned with making sure that nosy people cannot read, or worse yet, secretly modify messages intended for other recipients. It is concerned with people trying to access remote services that they are not authorized to use. It also deals with ways to tell whether that message purportedly from the IRS ‘‘Pay by Friday, or else’’ is really from the IRS and not from the Mafia. Security also deals with the problems of legitimate messages being captured and replayed, and with people later trying to deny that they sent certain messages.

Most security problems are intentionally caused by malicious people trying to gain some benefit, get attention, or harm someone. A few of the most common perpetrators are listed in Fig. 8-1. It should be clear from this list that making a network secure involves a lot more than just keeping it free of programming errors. It involves outsmarting often intelligent, dedicated, and sometimes wellfunded adversaries. It should also be clear that measures that will thwart casual attackers will have little impact on the serious ones. Police records show that the most damaging attacks are not perpetrated by outsiders tapping a phone line but by insiders bearing a grudge. Security systems should be designed accordingly.

NETWORK SECURITY PART - 1

Network security problems can be divided roughly into four closely intertwined areas: secrecy, authentication, nonrepudiation, and integrity control. Secrecy, also called confidentiality, has to do with keeping information out of the grubby little hands of unauthorized users. This is what usually comes to mind when people think about network security. Authentication deals with determining whom you are talking to before revealing sensitive information or entering into a business deal. Nonrepudiation deals with signatures: how do you prove that your customer really placed an electronic order for ten million left-handed doohickeys at 89 cents each when he later claims the price was 69 cents? Or maybe he claims he never placed any order. Finally, integrity control has to do with how you can be sure that a message you received was really the one sent and not something that a malicious adversary modified in transit or concocted.

All these issues (secrecy, authentication, nonrepudiation, and integrity control) occur in traditional systems, too, but with some significant differences. Integrity and secrecy are achieved by using registered mail and locking documents up. Robbing the mail train is harder now than it was in Jesse James’ day.

Also, people can usually tell the difference between an original paper document and a photocopy, and it often matters to them. As a test, make a photocopy of a valid check. Try cashing the original check at your bank on Monday. Now try cashing the photocopy of the check on Tuesday. Observe the difference in the bank’s behavior. With electronic checks, the original and the copy are indistinguishable. It may take a while for banks to learn how to handle this.

People authenticate other people by various means, including recognizing their faces, voices, and handwriting. Proof of signing is handled by signatures on letterhead paper, raised seals, and so on. Tampering can usually be detected by handwriting, ink, and paper experts. None of these options are available electronically. Clearly, other solutions are needed.

Before getting into the solutions themselves, it is worth spending a few moments considering where in the protocol stack network security belongs. There is probably no one single place. Every layer has something to contribute. In the physical layer, wiretapping can be foiled by enclosing transmission lines (or better yet, optical fibers) in sealed tubes containing an inert gas at high pressure. Any attempt to drill into a tube will release some gas, reducing the pressure and triggering an alarm. Some military systems use this technique.

In the data link layer, packets on a point-to-point line can be encrypted as they leave one machine and decrypted as they enter another. All the details can be handled in the data link layer, with higher layers oblivious to what is going on. This solution breaks down when packets have to traverse multiple routers, however, because packets have to be decrypted at each router, leaving them vulnerable to attacks from within the router. Also, it does not allow some sessions to be protected (e.g., those involving online purchases by credit card) and others not. Nevertheless, link encryption, as this method is called, can be added to any network easily and is often useful.

In the network layer, firewalls can be installed to keep good packets and bad packets out. IP security also functions in this layer.

In the transport layer, entire connections can be encrypted end to end, that is, process to process. For maximum security, end-to-end security is required.

Finally, issues such as user authentication and nonrepudiation can only be handled in the application layer.

Since security does not fit neatly into any layer, it does not fit into any chapter of this book. For this reason, it rates its own chapter.

While this chapter is long, technical, and essential, it is also quasi-irrelevant for the moment. It is well documented that most security failures at banks, for example, are due to lax security procedures and incompetent employees, numerous implementation bugs that enable remote break-ins by unauthorized users, and socalled social engineering attacks, where customers are tricked into revealing their account details. All of these security problems are more prevalent than clever criminals tapping phone lines and then decoding encrypted messages. If a person can walk into a random branch of a bank with an ATM slip he found on the street claiming to have forgotten his PIN and get a new one on the spot (in the name of good customer relations), all the cryptography in the world will not prevent abuse. In this respect, Ross Anderson’s (2008a) book is a real eye-opener, as it documents hundreds of examples of security failures in numerous industries, nearly all of them due to what might politely be called sloppy business practices or inattention to security. Nevertheless, the technical foundation on which e-commerce is built when all of these other factors are done well is cryptography.

Except for physical layer security, nearly all network security is based on cryptographic principles. For this reason, we will begin our study of security by examining cryptography in some detail. In Sec. 8.1, we will look at some of the basic principles. In Sec. 8-2 through Sec. 8-5, we will examine some of the fundamental algorithms and data structures used in cryptography. Then we will examine in detail how these concepts can be used to achieve security in networks. We will conclude with some brief thoughts about technology and society.

Before starting, one last thought is in order: what is not covered. We have tried to focus on networking issues, rather than operating system and application issues, although the line is often hard to draw. For example, there is nothing here about user authentication using biometrics, password security, buffer overflow attacks, Trojan horses, login spoofing, code injection such as cross-site scripting, viruses, worms, and the like. All of these topics are covered at length in Chap. 9 of Modern Operating Systems (Tanenbaum, 2007). The interested reader is referred to that book for the systems aspects of security. Now let us begin our journey.

CRYPTOGRAPHY

Cryptography comes from the Greek words for ‘‘secret writing.’’ It has a long and colorful history going back thousands of years. In this section, we will just sketch some of the highlights, as background information for what follows. For a complete history of cryptography, Kahn’s (1995) book is recommended reading. For a comprehensive treatment of modern security and cryptographic algorithms, protocols, and applications, and related material, see Kaufman et al. (2002). For a more mathematical approach, see Stinson (2002). For a less mathematical approach, see Burnett and Paine (2001).

Professionals make a distinction between ciphers and codes. A cipher is a character-for-character or bit-for-bit transformation, without regard to the linguistic structure of the message. In contrast, a code replaces one word with another word or symbol. Codes are not used any more, although they have a glorious history. The most successful code ever devised was used by the U.S. armed forces during World War II in the Pacific. They simply had Navajo Indians talking to each other using specific Navajo words for military terms, for example chay-dagahi-nail-tsaidi (literally: tortoise killer) for antitank weapon. The Navajo language is highly tonal, exceedingly complex, and has no written form. And not a single person in Japan knew anything about it.

In September 1945, the San Diego Union described the code by saying ‘‘For three years, wherever the Marines landed, the Japanese got an earful of strange gurgling noises interspersed with other sounds resembling the call of a Tibetan monk and the sound of a hot water bottle being emptied.’’ The Japanese never broke the code and many Navajo code talkers were awarded high military honors for extraordinary service and bravery. The fact that the U.S. broke the Japanese code but the Japanese never broke the Navajo code played a crucial role in the American victories in the Pacific.

Introduction to Cryptography

Historically, four groups of people have used and contributed to the art of cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the military has had the most important role and has shaped the field over the centuries. Within military organizations, the messages to be encrypted have traditionally been given to poorly paid, low-level code clerks for encryption and transmission. The sheer volume of messages prevented this work from being done by a few elite specialists.

Until the advent of computers, one of the main constraints on cryptography had been the ability of the code clerk to perform the necessary transformations, often on a battlefield with little equipment. An additional constraint has been the difficulty in switching over quickly from one cryptographic method to another one, since this entails retraining a large number of people. However, the danger of a code clerk being captured by the enemy has made it essential to be able to change the cryptographic method instantly if need be. These conflicting requirements have given rise to the model of Fig. 8-2.

NETWORK SECURITY PART - 1

The messages to be encrypted, known as the plaintext, are transformed by a function that is parameterized by a key. The output of the encryption process, known as the ciphertext, is then transmitted, often by messenger or radio. We assume that the enemy, or intruder, hears and accurately copies down the complete ciphertext. However, unlike the intended recipient, he does not know what the decryption key is and so cannot decrypt the ciphertext easily. Sometimes the intruder can not only listen to the communication channel (passive intruder) but can also record messages and play them back later, inject his own messages, or modify legitimate messages before they get to the receiver (active intruder). The art of breaking ciphers, known as cryptanalysis, and the art of devising them (cryptography) are collectively known as cryptology.

It will often be useful to have a notation for relating plaintext, ciphertext, and keys. We will use C = EK(P) to mean that the encryption of the plaintext P using key K gives the ciphertext C. Similarly, P = DK(C) represents the decryption of C to get the plaintext again. It then follows that                                                   DK(EK(P)) = P

This notation suggests that E and D are just mathematical functions, which they are. The only tricky part is that both are functions of two parameters, and we have written one of the parameters (the key) as a subscript, rather than as an argument, to distinguish it from the message.

A fundamental rule of cryptography is that one must assume that the cryptanalyst knows the methods used for encryption and decryption. In other words, the cryptanalyst knows how the encryption method, E, and decryption, D, of Fig. 8-2 work in detail. The amount of effort necessary to invent, test, and install a new algorithm every time the old method is compromised (or thought to be compromised) has always made it impractical to keep the encryption algorithm secret. Thinking it is secret when it is not does more harm than good.

This is where the key enters. The key consists of a (relatively) short string that selects one of many potential encryptions. In contrast to the general method, which may only be changed every few years, the key can be changed as often as required. Thus, our basic model is a stable and publicly known general method parameterized by a secret and easily changed key. The idea that the cryptanalyst knows the algorithms and that the secrecy lies exclusively in the keys is called Kerckhoff’s principle, named after the Flemish military cryptographer Auguste Kerckhoff who first stated it in 1883 (Kerckhoff, 1883). Thus, we have

Kerckhoff’s principle: All algorithms must be public; only the keys are secret

The nonsecrecy of the algorithm cannot be emphasized enough. Trying to keep the algorithm secret, known in the trade as security by obscurity, never works. Also, by publicizing the algorithm, the cryptographer gets free consulting from a large number of academic cryptologists eager to break the system so they can publish papers demonstrating how smart they are. If many experts have tried to break the algorithm for a long time after its publication and no one has succeeded, it is probably pretty solid.

Since the real secrecy is in the key, its length is a major design issue. Consider a simple combination lock. The general principle is that you enter digits in sequence. Everyone knows this, but the key is secret. A key length of two digits means that there are 100 possibilities. A key length of three digits means 1000 possibilities, and a key length of six digits means a million. The longer the key, the higher the work factor the cryptanalyst has to deal with. The work factor for breaking the system by exhaustive search of the key space is exponential in the key length. Secrecy comes from having a strong (but public) algorithm and a long key. To prevent your kid brother from reading your email, 64-bit keys will do. For routine commercial use, at least 128 bits should be used. To keep major governments at bay, keys of at least 256 bits, preferably more, are needed.

From the cryptanalyst’s point of view, the cryptanalysis problem has three principal variations. When he has a quantity of ciphertext and no plaintext, he is confronted with the ciphertext-only problem. The cryptograms that appear in the puzzle section of newspapers pose this kind of problem. When the cryptanalyst has some matched ciphertext and plaintext, the problem is called the known plaintext problem. Finally, when the cryptanalyst has the ability to encrypt pieces of plaintext of his own choosing, we have the chosen plaintext problem. Newspaper cryptograms could be broken trivially if the cryptanalyst were allowed to ask such questions as ‘‘What is the encryption of ABCDEFGHIJKL?’’

Novices in the cryptography business often assume that if a cipher can withstand a ciphertext-only attack, it is secure. This assumption is very naive. In many cases, the cryptanalyst can make a good guess at parts of the plaintext. For example, the first thing many computers say when you call them up is ‘‘login:’’. Equipped with some matched plaintext-ciphertext pairs, the cryptanalyst’s job becomes much easier. To achieve security, the cryptographer should be conservative and make sure that the system is unbreakable even if his opponent can encrypt arbitrary amounts of chosen plaintext.

Encryption methods have historically been divided into two categories: substitution ciphers and transposition ciphers. We will now deal with each of these briefly as background information for modern cryptography.

 



Frequently Asked Questions

+
Ans: Not everyone can set up a 1000-node CDN at locations around the world to distribute their content. (Actually, it is not hard to rent 1000 virtual machines around the globe because of the well-developed and competitive hosting industry. view more..
+
Ans: Server farms and Web proxies help to build large sites and to improve Web performance, but they are not sufficient for truly popular Web sites that must serve content on a global scale. For these sites, a different approach is needed. view more..
+
Ans: The Web designs that we have seen so far have a single server machine talking to multiple client machines. To build large Web sites that perform well, we can speed up processing on either the server side or the client side. On the server side, more powerful Web servers can be built with a server farm, in which a cluster of computers acts as a single server. view more..
+
Ans: For the first few decades of their existence, computer networks were primarily used by university researchers for sending email and by corporate employees for sharing printers. Under these conditions, security did not get a lot of attention. view more..
+
Ans: In a substitution cipher, each letter or group of letters is replaced by another letter or group of letters to disguise it. One of the oldest known ciphers is the Caesar cipher, attributed to Julius Caesar. view more..
+
Ans: Modern cryptography uses the same basic ideas as traditional cryptography (transposition and substitution), but its emphasis is different. Traditionally, cryptographers have used simple algorithms. view more..
+
Ans: Despite all this complexity, AES (or DES, or any block cipher for that matter) is basically a monoalphabetic substitution cipher using big characters (128-bit characters for AES and 64-bit characters for DES). Whenever the same plaintext block goes in the front end, the same ciphertext block comes out the back end. view more..
+
Ans: We have now finished our study of the tools of the trade. Most of the important techniques and protocols have been covered. The rest of the chapter is about how these techniques are applied in practice to provide network security, plus some thoughts about the social aspects of security at the end of the chapter. view more..
+
Ans: Historically, distributing the keys has always been the weakest link in most cryptosystems. No matter how strong a cryptosystem was, if an intruder could steal the key, the system was worthless. Cryptologists always took for granted that the encryption key and decryption key were the same (or easily derived from one another). view more..
+
Ans: The ability to connect any computer, anywhere, to any other computer, anywhere, is a mixed blessing. For individuals at home, wandering around the Internet is lots of fun. For corporate security managers, it is a nightmare. Most companies have large amounts of confidential information online—trade secrets, product development plans, marketing strategies, financial analyses, etc. Disclosure of this information to a competitor could have dire consequencesThe ability to connect any computer, anywhere, to any other computer, anywhere, is a mixed blessing. For individuals at home, wandering around the Internet is lots of fun. For corporate security managers, it is a nightmare. Most companies have large amounts of confidential information online—trade secrets, product development plans, marketing strategies, financial analyses, etc. Disclosure of this information to a competitor could have dire consequences. view more..
+
Ans: The authenticity of many legal, financial, and other documents is determined by the presence or absence of an authorized handwritten signature. And photocopies do not count. For computerized message systems to replace the physical transport of paper-and-ink documents, a method must be found to allow documents to be signed in an unforgeable way. view more..
+
Ans: In the world of crypto, nothing is ever what it seems to be. One might think that it would take on the order of 2m operations to subvert an m-bit message digest. In fact, 2m/2 operations will often do using the birthday attack, an approach published by Yuval (1979) in his now-classic paper ‘‘How to Swindle Rabin.’’ view more..
+
Ans: Public-key cryptography makes it possible for people who do not share a common key in advance to nevertheless communicate securely. It also makes signing messages possible without the presence of a trusted third party. view more..
+
Ans: It is surprisingly easy to design a system using VPNs and firewalls that is logically completely secure but that, in practice, leaks like a sieve. This situation can occur if some of the machines are wireless and use radio communication, which passes right over the firewall in both directions. view more..
+
Ans: Authentication is the technique by which a process verifies that its communication partner is who it is supposed to be and not an imposter. Verifying the identity of a remote process in the face of a malicious, active intruder is surprisingly difficult and requires complex protocols based on cryptography. view more..
+
Ans: Setting up a shared secret with a stranger almost worked, but not quite. On the other hand, it probably was not worth doing in the first place (sour grapes attack). To talk to n people this way, you would need n keys. For popular people, key management would become a real burden, especially if each key had to be stored on a separate plastic chip card. view more..
+
Ans: When an email message is sent between two distant sites, it will generally transit dozens of machines on the way. Any of these can read and record the message for future use. In practice, privacy is nonexistent, despite what many people think. view more..
+
Ans: We have just studied two important areas where security is needed: communications and email. You can think of these as the soup and appetizer. Now it is time for the main course: Web security view more..




Rating - NAN/5
496 views

Advertisements