# Network Topology

## Network Topology

The sites in a distributed system can be connected physically in a variety of ways. Each configuration has advantages and disadvantages. We can compare the configurations by using the following criteria:

• Installation cost. The cost of physically linking the sites in the system

• Communication cost. The cost in time and money to send a message from site A to site B 16.4 Network Topology 621

• Availability. The extent to which data can be accessed despite the failure of some links or sites

The various topologies are depicted in Figure 16.4 as graphs whose nodes correspond to sites. An edge from node A to node B corresponds to a direct communication link between the two sites. In a fully connected network, each site is directly connected to every other site.

However, the number of links grows as the square of the number of sites, resvilting in a huge installation cost. Therefore, fully connected networks are impractical in any large system. In a partially connected network, direct links exist between some—but not all—pairs of sites. Hence, the installation cost of such a configuration is lower than that of the fully connected network. However, if two sites A and B are not directly connected, messages from one to the other must be routed through a sequence of communication links. This requirement results in a higher communication cost.

If a communication link fails, messages that would have been transmitted across the link must be rerouted. In some cases, another route through the network may be found, so that the messages are able to reach their destination. In other cases, a failure may mean that no connection exists between some pairs of sites. When a system is split into two (or more) subsystems that lack any connection between them, it is partitioned. Under this definition, a subsystem (or partition) may consist of a single node. The various partially connected network types include tree-structured networks, ring networks, and star networks, as shown in Figure 16.4.

They have different failure characteristics and installation and communication costs. Installation and communication costs are relatively low for a tree-structured network. However, the failure of a single link in such a network can result in the network's becoming partitioned. In a ring network, at least two links must fail for partition to occur. Thus, the ring network has a higher degree of availability than does a tree-structured network. However, the communication cost is high, since a message may have to cross a large number of links.

In a star network, the failure of a single link results in a network partition, but one of the partitions has only a single site. Such a partition can be treated as a single-site failure. The star network also has a low communication cost, since each site is at most two links away from every other site. However, if the central site fails, every site in the system becomes disconnected.

+
Ans: Network Structure There are basically two types of networks: local-area networks (LAN) and wide-area networks (WAN). The main difference between the two is the way in which they are geographically distributed. Local-area networks are composed of processors distributed over small areas (such as a single building? or a number of adjacent buildings), whereas wide-area networks are composed of a number of autonomous processors distributed over a large area (such as the United States). These differences imply major variations in the speed and reliability of the communications network, and they are reflected in the distributed operating-system design. view more..
+
Ans: Example: The WAFL File System Disk I/O has a huge impact on system performance. As a result, file-system design and implementation command quite a lot of attention from system designers. Some file systems are general purpose, in that they can provide reasonable performance and functionality for a wide variety of file sizes, file types, and I/O loads. Others are optimized for specific tasks in an attempt to provide better performance in those areas than general-purpose file systems. view more..
+
Ans: Log-Structured File Systems Computer scientists often find that algorithms and technologies originally used in one area are equally useful in other areas. Such is the case with the database log-based recovery algorithms described in Section 6.9.2. These logging algorithms have been applied successfully to the problem of consistency checking. The resulting implementations are known as log-based transaction-oriented (or journaling) file systems. view more..
+
Ans: Network Topology The sites in a distributed system can be connected physically in a variety of ways. Each configuration has advantages and disadvantages. We can compare the configurations by using the following criteria: • Installation cost. The cost of physically linking the sites in the system • Communication cost. The cost in time and money to send a message from site A to site B 16.4 Network Topology 621 • Availability. The extent to which data can be accessed despite the failure of some links or sites view more..
+
Ans: Revocation of Access Rights In a dynamic protection system, we may sometimes need to revoke access rights to objects shared by different users view more..
+
Ans: We survey two capability-based protection systems. These systems vary in their complexity and in the types of policies that can be implemented on them. Neither system is widely used, but they are interesting proving grounds for protection theories view more..
+
Ans: Robustness A distributed system may suffer from various types of hardware failure. The failure of a link, the failure of a site, and the loss of a message are the most common types. To ensure that the system is robust, we must detect any of these failures, reconfigure the system so that computation can continue, and recover when a site or a link is repaired. view more..
+
Ans: Design Issues Making the multiplicity of processors and storage devices transparent to the users has been a key challenge to many designers. Ideally, a distributed system should look to its users like a conventional, centralized system. The1 user interface of a transparent distributed system should not distinguish between local and remote resources. That is, users should be able to access remote resources as though these resources were local, and the distributed system should be responsible for locating the resources and for arranging for the appropriate interaction. view more..
+
Ans: Design Principles Microsoft's design goals for Windows XP include security, reliability, Windows and POSIX application compatibility, high performance, extensibility, portability, and international support. view more..
+
Ans: Input and Output To the user, the I/O system in Linux looks much like that in any UNIX system. That is, to the extent possible, all device drivers appear as normal files. A user can open an access channel to a device in the same way she opens any other file—devices can appear as objects within the file system. The system administrator can create special files within a file system that contain references to a specific device driver, and a user opening such a file will be able to read from and write to the device referenced. By using the normal file-protection system, which determines who can access which file, the administrator can set access permissions for each device. Linux splits all devices into three classes: block devices, character devices, and network devices. view more..
+
Ans: Communication Protocols When we are designing a communication network, we must deal with the inherent complexity of coordinating asynchronous operations communicating in a potentially slow and error-prone environment. In addition, the systems on the network must agree on a protocol or a set of protocols for determining host names, locating hosts on the network, establishing connections, and so on. view more..
+
Ans: Naming and Transparency Naming is a mapping between logical and physical objects. For instance, users deal with logical data objects represented by file names, whereas the system manipulates physical blocks of data stored on disk tracks. Usually, a user refers to a file by a textual name. view more..
+
Ans: Stateful Versus Stateless Service There are two approaches for storing server-side information when a client accesses remote files: Either the server tracks each file being accessed byeach client, or it simply provides blocks as they are requested by the client without knowledge of how those blocks are used. In the former case, the service provided is stateful; in the latter case, it is stateless. view more..
+
Ans: Computer-Security Classifications The U.S. Department of Defense Trusted Computer System Evaluation Criteria specify four security classifications in systems: A, B, C, and D. This specification is widely used to determine the security of a facility and to model security solutions, so we explore it here. The lowest-level classification is division D, or minimal protection. Division D includes only one class and is used for systems that have failed to meet the requirements of any of the other security classes. For instance, MS-DOS and Windows 3.1 are in division D. Division C, the next level of security, provides discretionary protection and accountability of users and their actions through the use of audit capabilities. view more..
+
Ans: An Example: Windows XP Microsoft Windows XP is a general-purpose operating system designed to support a variety of security features and methods. In this section, we examine features that Windows XP uses to perform security functions. For more information and background on Windows XP, see Chapter 22. The Windows XP security model is based on the notion of user accounts. Windows XP allows the creation of any number of user accounts, which can be grouped in any manner. Access to system objects can then be permitted or denied as desired. Users are identified to the system by a unique security ID. When a user logs on, Windows XP creates a security access token that includes the security ID for the user, security IDs for any groups of which the user is a member, and a list of any special privileges that the user has. view more..
+
Ans: An Example: Networking We now return to the name-resolution issue raised in Section 16.5.1 and examine its operation with respect to the TCP/IP protocol stack on the Internet. We consider the processing needed to transfer a packet between hosts on different Ethernet networks. In a TCP/IP network, every host has a name and an associated 32-bit Internet number (or host-id). view more..
+
Ans: Application I/O interface In this section, we discuss structuring techniques and interfaces for the operating system that enable I/O devices to be treated in a standard, uniform way. We explain, for instance, how an application can open a file on a disk without knowing what kind of disk it is and how new disks and other devices can be added to a computer without disruption of the operating system. Like other complex software-engineering problems, the approach here involves abstraction, encapsulation, and software layering. Specifically we can abstract away the detailed differences in I/O devices by identifying a fewgeneral kinds. Each general kind is accessed through a standardized set of functions—an interface. The differences are encapsulated in kernel modules called device drivers that internally are custom-tailored to each device but that export one of the standard interfaces. view more..
+
Ans: Transforming I/O Requests to Hardware Operations Earlier, we described the handshaking between a device driver and a device controller, but we did not explain how the operating system connects an application request to a set of network wires or to a specific disk sector. Let's consider the example of reading a file from disk. The application refers to the data by a file name. Within a disk, the file system maps from the file name through the file-system directories to obtain the space allocation of the file. For instance, in MS-DOS, the name maps to a number that indicates an entry in the file-access table, and that table entry tells which disk blocks are allocated to the file. In UNIX, the name maps to an inode number, and the corresponding inode contains the space-allocation information. How is the connection made from the file name to the disk controller (the hardware port address or the memory-mapped controller registers)? First, we consider MS-DOS, a relatively simple operating system. The first part of an MS-DOS file name, preceding the colon, is a string that identifies a specific hardware device. For example, c: is the first part of every file name on the primary hard disk view more..

Rating - 3/5
519 views