TCP Competition: Reno vs BBR|Mininet




TCP Competition: Reno vs BBR

We can apply the same technique to compare TCP Reno to TCP BBR. This was done to create the graph at 22.16 TCP BBR. The Mininet approach is usable as soon as a TCP BBR module for Linux was released (in source form); to use a simulator,

on the other hand, would entail waiting for TCP BBR to be ported to the simulator. One nicety is that it is essential that the fq queuing discipline be enabled for the TCP BBR sender. If that is h2, for example, then the following Mininet code (perhaps in competition.py) removes any existing queuing discipline and adds fq:

h2.cmd('tc qdisc del dev h2-eth root')
 h2.cmd('tc qdisc add dev h2-eth root fq')

 

The purpose of the fq queuing is to enable pacing; that is, the transmission of packets at regular, very small intervals.

 



Frequently Asked Questions

+
Ans: IP Routers With Simple Distance-Vector Implementation|Mininet view more..
+
Ans: IP Routers in a Line|Mininet view more..
+
Ans: Multiple Switches in a Line|Mininet view more..
+
Ans: TCP Competition: Reno vs BBR|Mininet view more..
+
Ans: Linux Traffic Control (tc)|Mininet view more..
+
Ans: OpenFlow and the POX Controller|Mininet view more..
+
Ans: RSA|PUBLIC-KEY ENCRYPTION view more..
+
Ans: Forward Secrecy|Public-Key Encryption view more..
+
Ans: Trust and the Man in the Middle|Public-Key Encryption view more..
+
Ans: End-to-End Encryption|Public-Key Encryption view more..
+
Ans: SSH and TLS|Public-Key Encryption view more..
+
Ans: IPsec |Public-Key Encryption view more..
+
Ans: Information can be transmitted on wires by varying some physical property such as voltage or current. By representing the value of this voltage or current as a single-valued function of time, f(t), we can model the behavior of the signal and analyze it mathematically. This analysis is the subject of the following sections. view more..
+
Ans: The purpose of the physical layer is to transport bits from one machine to another. Various physical media can be used for the actual transmission. Each one has its own niche in terms of bandwidth, delay, cost, and ease of installation and maintenance view more..
+
Ans: Our age has given rise to information junkies: people who need to be online all the time. For these mobile users, twisted pair, coax, and fiber optics are of no use. They need to get their ‘‘hits’’ of data for their laptop, notebook, shirt pocket, palmtop, or wristwatch computers without being tethered to the terrestrial communication infrastructure. view more..
+
Ans: In the 1950s and early 1960s, people tried to set up communication systems by bouncing signals off metallized weather balloons. Unfortunately, the received signals were too weak to be of any practical use. Then the U.S. Navy noticed a kind of permanent weather balloon in the sky—the moon—and built an operational system for ship-to-shore communication by bouncing signals off it. view more..
+
Ans: Now that we have studied the properties of wired and wireless channels, we turn our attention to the problem of sending digital information. Wires and wireless channels carry analog signals such as continuously varying voltage, light intensity, or sound intensity. To send digital information, we must devise analog signals to represent bits. view more..
+
Ans: When two computers owned by the same company or organization and located close to each other need to communicate, it is often easiest just to run a cable between them. LANs work this way. However, when the distances are large or there are many computers or the cables have to pass through a public road or other public right of way, the costs of running private cables are usually prohibitive. view more..




Rating - 3/5
519 views

Advertisements