Shear Stress and Strain




The third kind of stress-strain situation is called shear. The ribbon in Fig. 11.12c
is under shear stress: One part of the ribbon is being pushed up while an
adjacent part is being pushed down, producing a deformation of the ribbon.
Figure 11.18 shows a body being deformed by a shear stress. In the figure, forces
of equal magnitude but opposite direction act tangent to the surfaces of opposite
ends of the object. We define the shear stress as the force FΠacting tangent to the
surface divided by the area A on which it acts:

Shear Stress and Strain

 

Shear stress, like the other two types of stress, is a force per unit area.
Figure 11.18 shows that one face of the object under shear stress is displaced
by a distance x relative to the opposite face. We define shear strain as the ratio
of the displacement x to the transverse dimension h:

Shear Stress and Strain

 

In real-life situations, x is typically much smaller than h. Like all strains, shear
strain is a dimensionless number; it is a ratio of two lengths.
If the forces are small enough that Hooke’s law is obeyed, the shear strain
is proportional to the shear stress. The corresponding elastic modulus (ratio of
shear stress to shear strain) is called the shear modulus, denoted by S:

Shear Stress and Strain

 

 

 

Table 11.1 gives several values of shear modulus. For a given material, S is usually one-third to one-half as large as Young’s modulus Y for tensile stress. Keep in mind that the concepts of shear stress, shear strain, and shear modulus apply to solid materials only. The reason is that shear refers to deforming an object that has a definite shape (see Fig. 11.18). This concept doesn’t apply to gases and liquids, which do not have definite shapes

 

Shear Stress and Strain



Frequently Asked Questions

+
Ans: When a scuba diver plunges deep into the ocean, the water exerts nearly uniform pressure everywhere on his surface and squeezes him to a slightly smaller volume. This is a different situation from the tensile and compressive stresses and strains we have discussed. view more..
+
Ans: The simplest elastic behavior to understand is the stretching of a bar, rod, or wire when its ends are pulled (Fig. 11.12a). Figure 11.14 shows an object that initially has uniform cross-sectional area A and length l0. We then apply forces of equal magnitude F# but opposite directions at the ends (this ensures that the object has no tendency to move left or right). We say that the object is in tension. view more..
+
Ans: The rigid body is a useful idealized model, but the stretching, squeezing, and twisting of real bodies when forces are applied are often too important to ignore. view more..
+
Ans: The third kind of stress-strain situation is called shear. The ribbon in Fig. 11.12c is under shear stress: One part of the ribbon is being pushed up while an adjacent part is being pushed down, producing a deformation of the ribbon. view more..
+
Ans: Hooke’s law—the proportionality of stress and strain in elastic deformations— has a limited range of validity. In the preceding section we used phrases such as “if the forces are small enough that Hooke’s law is obeyed.” Just what are the limitations of Hooke’s law? What’s more, if you pull, squeeze, or twist anything hard enough, it will bend or break view more..
+
Ans: summary of equilibrium and elasticity view more..
+
Ans: Fluids play a vital role in many aspects of everyday life. We drink them, breathe them, swim in them. They circulate through our bodies and control our weather. The physics of fluids is therefore crucial to our understanding of both nature and technology view more..
+
Ans: A fluid is any substance that can flow and change the shape of the volume that it occupies. (By contrast, a solid tends to maintain its shape.) We use the term “fluid” for both gases and liquids. The key difference between them is that a liquid has cohesion, while a gas does not. The molecules in a liquid are close to one another, so they can exert attractive forces on each other and thus tend to stay together (that is, to cohere). That’s why a quantity of liquid maintains the same volume as it flows: If you pour 500 mL of water into a pan, the water will still occupy a volume of 500 mL. The molecules of a gas, by contrast, are separated on average by distances far larger than the size of a molecule. Hence the forces between molecules are weak, there is little or no cohesion, and a gas can easily change in volume. If you open the valve on a tank of compressed oxygen that has a volume of 500 mL, the oxygen will expand to a far greater volume. view more..
+
Ans: A fluid exerts a force perpendicular to any surface in contact with it, such as a container wall or a body immersed in the fluid. This is the force that you feel pressing on your legs when you dangle them in a swimming pool. Even when a fluid as a whole is at rest, the molecules that make up the fluid are in motion; the force exerted by the fluid is due to molecules colliding with their surroundings view more..
+
Ans: If the weight of the fluid can be ignored, the pressure in a fluid is the same throughout its volume. We used that approximation in our discussion of bulk stress and strain in Section 11.4. But often the fluid’s weight is not negligible, and pressure variations are important. Atmospheric pressure is less at high altitude than at sea level, which is why airliner cabins have to be pressurized. When you dive into deep water, you can feel the increased pressure on your ears. view more..
+
Ans: Pressure applied to an enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the containing vessel. view more..
+
Ans: If the pressure inside a car tire is equal to atmospheric pressure, the tire is flat. The pressure has to be greater than atmospheric to support the car, so the significant quantity is the difference between the inside and outside pressures. When we say that the pressure in a car tire is “32 pounds” (actually 32 lb>in.2 , equal to 220 kPa or 2.2 * 105 Pa), we mean that it is greater than atmospheric pressure (14.7 lb>in.2 or 1.01 * 105 Pa) by this amount. view more..
+
Ans: The simplest pressure gauge is the open-tube manometer . The U-shaped tube contains a liquid of density r, often mercury or water. The left end of the tube is connected to the container where the pressure p is to be measured, and the right end is open to the atmosphere view more..
+
Ans: A body immersed in water seems to weigh less than when it is in air. When the body is less dense than the fluid, it floats. The human body usually floats in water, and a helium-filled balloon floats in air. These are examples of buoyancy, a phenomenon described by Archimedes’s principle: view more..
+
Ans: We’ve seen that if an object is less dense than water, it will float partially submerged. But a paper clip can rest atop a water surface even though its density is several times that of water. This is an example of surface tension: view more..
+
Ans: We are now ready to consider motion of a fluid. Fluid flow can be extremely complex, as shown by the currents in river rapids or the swirling flames of a campfire. But we can represent some situations by relatively simple idealized models. An ideal fluid is a fluid that is incompressible (that is, its density cannot change) and has no internal friction (called viscosity). view more..
+
Ans: The mass of a moving fluid doesn’t change as it flows. This leads to an important relationship called the continuity equation view more..
+
Ans: According to the continuity equation, the speed of fluid flow can vary along the paths of the fluid. The pressure can also vary; it depends on height as in the static situation (see Section 12.2), and it also depends on the speed of flow. We can derive an important relationship called Bernoulli’s equation, view more..




Rating - 4/5
459 views

Advertisements