Common Bus System




The basic computer has

  1. eight registers,
  2. a memory unit, and
  3. a control unit.
  • Paths must be provided to transfer information from one register to another and between memory and registers. The number of wires will be excessive if connections are made between the outputs of each register and the inputs of the other registers. A more efficient scheme for transferring information in a system with many registers is to use a common bus. We can construct a bus system using multiplexers or three-state buffer gates. We just have to connect the registers and memory of the basic computer to a common bus system.
  • The outputs of seven registers and memory are connected to the common bus. The specific output that is selected for the bus lines at any given time is determined from the binary value of the selection variables S2, S1, and S0. The number along each output shows the decimal equivalent of the required binary selection. For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on the bus lines when S2S1S0 = 011 since this is the binary value of decimal 3.
  • The lines from the common bus are connected to the inputs of each register and the data inputs of the memory. The particular register whose LD (load) input is enabled receives the data from the bus during the next clock pulse transition. The memory receives the contents of the bus when its write input is activated. The memory places its 16-bit output onto the bus when the read input is activated and S2S1S0 = 111.

Common Bus System

 

  • Four registers, DR, AC, IR, and TR, have 16 bits each. Two registers, AR and PC, have 12 bits each since they hold a memory address. When the contents of AR or PC are applied to the 16-bit common bus, the four most significant bits are set to O's. When AR or PC receive information from the bus, only the 12 least significant bits are transferred into the register.
  • The input register INPR and the output register OUTR have 8 bits each and communicate with the eight least significant bits in the bus. INPR is connected to provide information to the bus but OUTR can only receive infor­mation from the bus. This is because INPR receives a character from an input device which is then transferred to AC .
  • OUTR receives a character from AC and delivers it to an output device. There is no transfer from OUTR to any of the other registers.
  • The 16 lines of the common bus receive information from six registers and the memory unit. The bus lines are connected to the inputs of six registers and the memory. Five registers have three control inputs: LD (load), INR (increment), and­ CLR (clear). This type of register is equivalent to a binary counter with parallel load and synchronous. The increment operation is achieved by enabling the count input of the coun­ter. Two registers have only a LD input.
  • The input data and output data of the memory are connected to the common bus, but the memory address is connected to AR . Therefore, AR must always be used to specify a memory address. By using a single register for the address, we eliminate the need for an address bus that would have been needed otherwise. The content of any register can be specified for the memory data input during a write operation. Similarly, any register can receive the data from memory after a read operation except AC .
  • The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of inputs. One set of 16-bit inputs come from the outputs of AC . They are used to implement register rnlcrooperations such as complement AC and shift AC . Another set of 16-bit inputs come from the data register DR . The inputs from DR and AC are used for arithmetic and logic microoperations, such as add DR to AC or AND DR to AC . The result of an addition is transferred to AC and the end carry-out of the addition is transferred to flip-flop E (Extended AC bit). A third set of 8-bit inputs come from the input register INPR.
  • Note that the content of any register can be applied onto the bus and an operation can be performed in the adder and logic circuit during the same clock cycle. The clock transition at the end of the cycle transfers the content of the bus into the designated destination register and the output of the adder and logic circuit into AC . For example, the two microoperation.

DR<---AC and AC <--DR

can be executed at the same time. This can be done by placing the content of AC on the bus (with S2S1S0 = 100), enabling the LD (load) input of DR, transferring the content of DR through the adder and logic circuit into AC, and enabling the LD (load) input of AC, all during the same clock cycle. The two transfers occur upon the arrival of the clock pulse transition at the end of the clock cycle.

 



Frequently Asked Questions

+
Ans: The memory address register (AR) has 12 bits since this is the width of a memory address. The program counter (PC) also has 12 bits and it holds the address of the next instruction to be read from memory after the current instruction is executed. The PC goes through a counting sequence and causes the computer to read sequential instructions previously stored in memory. Instruction words are read and executed in sequence unless a branch instruction is encountered. view more..
+
Ans: Computer instructions are normally stored in consecutive memory locations and are executed sequentially one at a time. The control reads an instruction from a specific address in memory and executes it. It then continues by reading the next instruction in sequence and executes it, and so on. view more..
+
Ans: It is sometimes convenient to use the address bits of an instruction code not as an address but as the actual operand. When the second part of an instruction code specifies an operand, the instruction is said to have an immediate operand. view more..
+
Ans: The basic computer has eight registers, a memory unit, and a control unit. Paths must be provided to transfer information from one register to another and between memory and registers. view more..
+
Ans: The input data and output data of the memory are connected to the common bus, but the memory address is connected to AR. Therefore, AR must always be used to specify a memory address. By using a single register for the address, we eliminate the need for an address bus that would have been needed otherwise. The content of any register can be specified for the memory data input during a write operation. Similarly, any register can receive the data from memory after a read operation except AC . view more..
+
Ans: The basic computer has three instruction code formats, as shown in Fig. 5-5. Each format has 16 bits. The operation code (opcode) part of the instruction contains three bits and the meaning of the remaining 13 bits depends on the operation code encountered. view more..
+
Ans: Before investigating the operations performed by the instructions, let us discuss the type of instructions that must be included in a computer. A computer should have a set of instructions so that the user can construct machine language programs to evaluate any function that is known to be computable. The set of instructions are said to be complete if the computer includes a sufficient number of instructions in each of the following categories: view more..
+
Ans: The timing for all registers in the basic computer is controlled by a master clock generator. The clock pulses are applied to all flip-flops and registers in the system, including the flip-flops and registers in the control unit. The clock pulses do not change the state of a register unless the register is enabled by view more..
+
Ans: The last three waveforms in Fig. 5-7 show how SC is cleared when D3T4 = I. Output D3 from the operation decoder becomes active at the end of timing signal T2• When timing signal T4 becomes active, the output of the AND gate that implements the control function D3T4 becomes active. This signal is applied to the CLR input of SC. view more..
+
Ans: A program residing in the memory unit of the computer consists of a sequence of instructions. The program is executed in the computer by going through a cycle for each instruction. Each instruction cycle in turn is subdivided into a sequence of subcycles or phases. In the basic computer each instruction cycle consists of the following phases: view more..
+
Ans: Initially, the program counter PC is loaded with the address of the first instruction in the program. The sequence counter SC is cleared to 0, providing a decoded timing signal To. After each clock pulse, SC is incremented by one, so that the timing signals go through a sequence T0, T1, T2, and so on. The rnicrooperations for the fetch and decode phases can be specified by the following register transfer statements. view more..
+
Ans: The timing signal that is active after the decoding is T3• During time T,, the control unit determines the type of instruction that was just read from memory. The flowchart of Fig. 5-9 presents an initial configuration for the instruction cycle and shows how the control determines the instruction type after the decoding. The three possible instruction types available in the basic computer are specified in Fig. 5-5. view more..
+
Ans: Register-reference instructions are recognized by the control when 07 = 1 and I = 0. These instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions. These 12 bits are available in IR(0-11). They were also transferred to AR during time T2• view more..
+
Ans: In order to specify the rnicrooperations needed for the execution of each instruction, it is necessary that the function that they are intended to perform be defined precisely. Looking back to Table 5-2, where the instructions are listed, we find that some instructions have an ambiguous description. This is because the explanation of an instruction in words is usually lengthy, and not enough space is available in the table for such a lengthy explanation. We will now show that the function of the memory-reference instructions can be defined precisely by means of register transfer notation. view more..
+
Ans: This is an instruction that performs the AND logic operation on pairs of bits in AC and the memory word specified by the effective address. The result of view more..
+
Ans: This instruction adds the content of the memory word specified by the effective address to the value of AC. The sum is transferred into AC and the output carry C,., is transferred to the E (extended accumulator) flip-flop. The rnicrooperations needed to execute this instruction are view more..
+
Ans: This instruction transfers the memory word specified by the effective address to AC. The rnicrooperations needed to execute this instruction are view more..
+
Ans: This instruction stores the content of AC into the memory word specified by the effective address. Since the output of AC is applied to the bus and the data input of memory is connected to the bus, we can execute this instruction with one microoperation: view more..




Rating - 3/5
473 views

Advertisements